Skip to main content

Part of the book series: Physics and Chemistry of Materials with Layered Structures ((PCMA,volume 1))

Abstract

This article will, for the most part, deal with graphite and its intercalation compounds. This is because much more is known about the layered form of carbon than about the layered forms of all the other elements. Furthermore, much of that information is about the intercalation properties of graphite. Thus, it has been known since 1860 that certain elements and compounds would cause graphite to swell and to increase in weight. It is generally agreed that the adduct or reactant diffuses from the periphery of the layer planes into some or all of the interlayer spaces and leaves by the same route on pressure reduction. The other characteristics of layer structures are associated with the anisotropy of their physical properties but again, graphite is the one that has been most studied. Before dealing with graphite, however, this introductory section will discuss the bonding factors that lead to the existence of solids with layer structures in the cases of C, P, As, Sb and Bi. Boron nitride BN is included here because it is isoelectronic with carbon and has a form with a layer structure. Then the many forms of graphite will be described which differ in the size, the degree of perfection and the relative orientation of the layers of hexagonally arranged carbon atoms. Then a detailed description of the intercalation of graphite by halogens and by metal chlorides will serve to introduce and to support a theory of intercalation. This qualitative theory will try to explain the existence of a threshold pressure below which intercalation is not observed and the existence of stages, the stage number being the number of carbon layer planes between layers of reactant in the compound. Following this, the intercalation of graphite by other reactants such as metals, acids, etc. will be described in detail Finally, contradictory reports of the behavior of the layered form of BN with various reactants will be discussed. These reports, along with some of the work on graphite, illustrate the experimental difficulty of deciding whether or not intercalation does take place with a given reactant. Two of the best criteria are the form of the isotherm of composition against pressure and the direct observation of the expansion of a single flake of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linus Pauling: Proc. Nat. Acad. Sci. (U.S.A.) 56 (1966), 1646.

    Article  CAS  Google Scholar 

  2. A. G. Whittaker and G. M. Wolten, Science 178 (1972), 54.

    Article  CAS  Google Scholar 

  3. R. Hultgren, N. S. Gingrich, and B. E. Warren: J. Chem. Phys 3 (1935), 351.

    Article  CAS  Google Scholar 

  4. P. W. Bridgman: Proc. Nat. Acad. Sci. (U.S.A.) 21 (1935), 109.

    Article  CAS  Google Scholar 

  5. P. W. Bridgman: Phys. Rev. 3 (1914), 187.

    Google Scholar 

  6. H. Krebs, H. Weitz, and K. H. Worms: Z. anorg. allg. Chem. 280 (1955), 119.

    Article  CAS  Google Scholar 

  7. R. H. Wentorf Jr.: in J. J. Gilman (ed.), The Art and Science of Growing Crystals, J. Wiley, 1963, p. 187.

    Google Scholar 

  8. S. S. Boksha: J. Cryst. Growth 3/4 (1968), 426.

    Google Scholar 

  9. R. Rau and A. Rabenau: J. Cryst. Growth 3/4(1968), 417.

    Article  Google Scholar 

  10. A. J. Goss: in J. J. Gilman (ed.), The Art and Science of Growing Crystals, J. Wiley, 1963, p. 323.

    Google Scholar 

  11. J. M. Hutcheon: in L. C. F. Blackman (ed.), Modern Aspects of Graphite Technology,Academic Press, London, 1970, Ch. 1.

    Google Scholar 

  12. S. Ergun: Carbon 6 (1968), 141.

    Article  CAS  Google Scholar 

  13. D. F. Harling and F. A. Heckman: Materie Plastiche ed Elastomeri 35 (1969), 80.

    CAS  Google Scholar 

  14. G. M. Jenkins and K. Kawamura: Nature 231 (1971), 175.

    Article  CAS  Google Scholar 

  15. D. J. Johnson, p. 52 and A. Fourdeux, R. Perret, and W. Ruland, p. 57, in: Proc. Int. Conf. on Carbon Fibers, The Plastics Institute, London, 1971.

    Google Scholar 

  16. J. C. Bokros: in P. L. Walker, Jr. (ed.), Chemistry and Physics of Carbon, Vol. 5, Dekker, N.Y., 1969.

    Google Scholar 

  17. H. B. Haanstra, W. F. Knippenberg, and G. Verspui: J. Cryst. Growth 16 (1972), 71.

    Article  CAS  Google Scholar 

  18. H. M. Strong and R. E. Hanneman: in H. Steffen Peiser (ed.), Proc. of an Int. Conf. on Crystal Growth, Boston, 1966, p. 579.

    Google Scholar 

  19. G. R. Hennig: in F. A. Cotton (ed.), Progress in Inorganic Chemistry, Vol. 1, Interscience, N.Y., 1959.

    Google Scholar 

  20. W. Rudorff: in H. J. Emeleus and A. G. Sharpe (eds.), Advances in Inorganic Chemistry and Radiochemistry, Vol. 1, Academic Press, N.Y., 1959.

    Google Scholar 

  21. A. R. Ubbelohde and F. A. Lewis: Graphite and its Crystal Compounds, Oxford Press, 1960.

    Google Scholar 

  22. A. Hérold, R. Setton, and N. Platzer: Les Carbones, Vol. 2, p. 465, Masson, Paris, 1965.

    Google Scholar 

  23. J. G. Hooley: in P. L. Walker, Jr. (ed.), Chemistry and Physics of Carbon, Vol. 5, Dekker, N.Y., 1969.

    Google Scholar 

  24. J. G. Hooley and R. N. Soniassy: Carbon 8 (1970), 191.

    Article  CAS  Google Scholar 

  25. J. G. Hooley, W. P. Garby, and J. Valentin: Carbon 3 (1965), 7.

    Article  CAS  Google Scholar 

  26. T. Sasa, Y. Takahashi, and T. Mukaibo: Carbon 9 (1971), 407.

    Article  CAS  Google Scholar 

  27. J. G. Hooley: Carbon 11 (1973), 225.

    Article  CAS  Google Scholar 

  28. J. G. Hooley: Can. J. Chem. 40 (1962), 745.

    Article  Google Scholar 

  29. J. G. Hooley: Carbon 2 (1964), 131.

    Article  CAS  Google Scholar 

  30. G. A. Saunders: in L. C. F. Blackman (ed.), Modern Aspects of Graphite Technology,Blackman, Academic Press, London, 1970, Ch. 3.

    Google Scholar 

  31. A. R. Ubbelohde, L. C. F. Blackman, and J. F.- Mathews: Nature, London 183 (1959), 454.

    Article  CAS  Google Scholar 

  32. N. B. Hannay et al.: Phys. Rev. Letters 14 (1965), 225.

    Google Scholar 

  33. F. J. Salzano and M. Strongin: Phys. Rev. 153 (1967), 533.

    Article  CAS  Google Scholar 

  34. A. Hérold: Bull. Soc. Chim. Fr. (1955), 999.

    Google Scholar 

  35. J. G. Hooley: Carbon 8 (1970), 333.

    Article  CAS  Google Scholar 

  36. R. Juza and H. Seidel, Z. anorg. allg. Chem. 317 (1962), 73.

    Article  CAS  Google Scholar 

  37. G. Furdin and A. Hérold: Bull. Soc. Chim. Fr. (1972), 1768.

    Google Scholar 

  38. G. Colin et A. Hérold: ibid. (1972), 3345.

    Google Scholar 

  39. B. Bach et A. Hérold: ibid. (1968), 1978.

    Google Scholar 

  40. A. A. Opalovskii, A. S. Nazarov, and A. A. Uminskii: Russian J. Inorg. Chem. 17 (1972), 1366 and 2350.

    Google Scholar 

  41. R. C. Croft: Australian J. Chem. 9 (1956), 184.

    Article  Google Scholar 

  42. A. G. Freeman and J. H. Johnston: Carbon 9 (1971), 667.

    Article  CAS  Google Scholar 

  43. H. Thiele: Z. anorg. allg. Chem. 207 (1932), 340.

    Article  CAS  Google Scholar 

  44. W. Rudorff, E. Stumpp, W. Spriessler, and F. W. Siecke: Angew. Chem. Int. Ed. 2 (1963), 67.

    Article  Google Scholar 

  45. D. Ginderow and R. Setton: Compt. Rend. 257C (1963), 687.

    CAS  Google Scholar 

  46. E. Stumpp and F. Werner: Carbon 4 (1966), 538.

    Article  CAS  Google Scholar 

  47. J. G. Hooley and M. Bartlett: Carbon 5 (1967), 417.

    Article  CAS  Google Scholar 

  48. J. Melin and A. Hérold: Compt. Rend 269C (1969), 877.

    CAS  Google Scholar 

  49. A. Boeck and W. Rudorff: Z. anorg. allg. Chem. 384 (1971), 169.

    Article  CAS  Google Scholar 

  50. J. Mairé: Proc. U.N. Int. Conf. Peaceful Uses At. Energy, Geneva (1958), 392.

    Google Scholar 

  51. A. Boeck and W. Rudorff: Z. anorg. allg. Chem. 392 (1972), 236.

    Article  CAS  Google Scholar 

  52. J. G. Hooley: Carbon 10 (1972), 155.

    Article  CAS  Google Scholar 

  53. R. Vangelisti and A. Hérold: Compt. Rend. 276C (1973), 1109.

    CAS  Google Scholar 

  54. A. Boeck and W. Rudorff: Z. anorg. allg. Chem. 397 (1973), 179.

    Article  CAS  Google Scholar 

  55. J. G. Hooley, J. R. Sams, and B. V. Liengme: Carbon 8 (1970), 467.

    Article  CAS  Google Scholar 

  56. J. J. Lander and J. Morrison: Surface Sci. 6 (1967), 1.

    Article  CAS  Google Scholar 

  57. A. W. Syme Johnson: Acta Cryst. 23 (1967), 770.

    Article  CAS  Google Scholar 

  58. W. T. Eeles and J. A. Turnbull: Proc. Roy. Soc. A283 (1965), 179.

    Article  CAS  Google Scholar 

  59. M. L. Dzurus and G. R. Hennig: J. Am. Chem. Soc. 79 (1957), 1051.

    Article  CAS  Google Scholar 

  60. W. Rudorff and A. Landel: Z. anorg. allg. Chem. 293 (1958), 327.

    Article  Google Scholar 

  61. J. G. Hooley, M. W. Bartlett, B. V. Liengme, and J. Sams: Carbon 6 (1968), 681.

    Article  Google Scholar 

  62. A. G. Freeman: Chem. Commun. 193 (1968).

    Google Scholar 

  63. F. D. Grigutsch, D. Hohlwein, and A. Knappwost: Z. Physik. Chem. 65 (1969), 322.

    Article  CAS  Google Scholar 

  64. Y. N. Novikov et al.: Zh. Strukt. Khim. 11 (1970), 1039.

    Google Scholar 

  65. J. G. Hooley: unpublished.

    Google Scholar 

  66. H. Sato and R. S. Toth: Phys. Rev. 124 (1961), 1833.

    Article  CAS  Google Scholar 

  67. H. Kuhn: J. Chem. Phys. 17 (1949), 1198.

    Article  CAS  Google Scholar 

  68. K. Fredenhagen and G. Cadenbach: Z. anorg. allg. Chem. 158 (1926), 249.

    Article  CAS  Google Scholar 

  69. F. J. Salzano and S. Aronson: J. Inorg. Nucl. Chem. 30 (1968), 2317.

    Article  CAS  Google Scholar 

  70. C. Herinckx, R. Perret, and W. Ruland: Nature 220 (1968), 63.

    Article  CAS  Google Scholar 

  71. M. K. Halpin and G. M. Jenkins: Nature 218 (1968), 950.

    Article  CAS  Google Scholar 

  72. S. Aronson, F. J. Salzano, and D. Bellafiore: J. Chem. Phys. 49 (1968), 434.

    Article  CAS  Google Scholar 

  73. D. E. Nixon and G. S. Parry: J. Phys. C (Solid St.) 2 (1969), 1732.

    Article  CAS  Google Scholar 

  74. R. C. Asher and S. A. Wilson: Nature 181 (1958), 409.

    Article  CAS  Google Scholar 

  75. M. L. Dzurus, G. R. Hennig, and G. L. Montet: Proc. Fourth Carbon Coni, Pergamon, N.Y., 1960, p. 165.

    Google Scholar 

  76. H. L. Recht, G. M. Wolten, and D. E. Gilmartin: J. Inorg. Nucl. Chem. 23 (1961), 275.

    Article  Google Scholar 

  77. W. C. Sleppy: J. Inorg. Chem. 5 (1966), 2021.

    Article  CAS  Google Scholar 

  78. S. Aronson and F. J. Salzano: Nucl. Sci. Eng. 38 (1969), 187.

    CAS  Google Scholar 

  79. A. Métrot and A. Hérold: J. Chim. Phys., Physico Chim. Biol. 71 (1969), 73.

    Google Scholar 

  80. I. Pflugmacher and H. P. Boehm: Proc. 3rd Conf. Ind. Carbon and Graphite, London (1970), 62.

    Google Scholar 

  81. R. Juza and V. Wehle: Natw. 52 (1965), 560.

    CAS  Google Scholar 

  82. M. Bagouin, D. Guerard, and A. Hérold: Compt. Rend. 262C (1966), 557.

    CAS  Google Scholar 

  83. D. Guerard and A. Hérold: Compt. Rend. 275C (1972), 571.

    CAS  Google Scholar 

  84. W. Rudorff, E. Schulze, and O. Rubisch: Z. anorg. allg. Chem. 282 (1955), 232.

    Article  CAS  Google Scholar 

  85. W. Rudorff: Chimia 19 (1965), 489.

    Google Scholar 

  86. W. E. Craven and W. Ostertag: Carbon 4 (1966), 223.

    Article  CAS  Google Scholar 

  87. C. Stein, L. Bonnetain, and J. Gole: Bull. Soc. Chim. Fr. (1966), 3166.

    Google Scholar 

  88. D. Ginderow and R. Setton: Comps. Rend. 270C (1970), 135.

    CAS  Google Scholar 

  89. M. L. Dzurus and G. R. Hennig: J. Chem. Phys. 27 (1957), 275.

    Article  CAS  Google Scholar 

  90. K. Carr: Carbon 8 (1970), 155.

    Article  CAS  Google Scholar 

  91. K. Carr: Carbon 8 (1970), 245.

    Article  CAS  Google Scholar 

  92. M. J. Bottomley, G. S. Parry, A. R. Ubbelohde, and D. A. Young, J. Chem. Soc. (1963), 5674.

    Google Scholar 

  93. G. Hennig: J. Chem. Phys. 19 (1951), 922.

    Article  CAS  Google Scholar 

  94. M. J. Bottomley, G. S. Parry, and A. R. Ubbelohde: Proc. Roy. Soc. 279A (1964), 291.

    Article  Google Scholar 

  95. D. E. Nixon, G. S. Parry, and A. R. Ubbelohde: Proc. Roy. Soc. 219A (1966), 324.

    Google Scholar 

  96. S. Aronson, C. Frishberg, and G. Frankl: Carbon 9 (1971), 715.

    Article  CAS  Google Scholar 

  97. S. Aronson, S. Lemont, and J. Weiner: Inorganic Chem. 10 (1971), 1296.

    Article  CAS  Google Scholar 

  98. J. Besenhard and H. P. Fritz: Z. Naturforsch. 276 (1972), 1294.

    Google Scholar 

  99. J. H. de Boer and A. B. C. van Doom: Proc. K. Nederl. Akad. Wetensch. B61 (1958), 12, 17, 160, 242; B64 (1960), 34.

    Google Scholar 

  100. W. Rudorff, V. Sils, and R. Zeller: Z. anorg. allg. Chem. 283 (1956), 299.

    Article  CAS  Google Scholar 

  101. B. Bach and A. R. Ubbelohde: J. Chem. Soc. (1971), A 3669.

    Google Scholar 

  102. Y. Takahashi, H. Yamagata, and T. Mukaibo: Carbon 11 (1973). 19.

    Article  CAS  Google Scholar 

  103. N. Platzer and B. Martiniere: Bull. Soc. Chim. Fr. (1961), 177.

    Google Scholar 

  104. J. M. Lalancette, G. Rollin, and P. Dumas: Can. J. Chem. 50 (1972), 3058.

    Article  CAS  Google Scholar 

  105. G. Hennig: Nucl. Sci. Eng. 21 (1965), 34.

    CAS  Google Scholar 

  106. H. Fuzellier and A. Hérold: Compt. Rend. 267C (1968), 607.

    CAS  Google Scholar 

  107. M. Bagouin, H. Fuzellier, and A. Hérold: Compt. Rend. 262C (1966), 1074.

    CAS  Google Scholar 

  108. H. P. Boehm and J. N. Meussdoerffer: Carbon 9 (1971), 521.

    Article  CAS  Google Scholar 

  109. H. Fuzellier and A. Hérold: Compt. Rend. 276C (1973), 1287.

    CAS  Google Scholar 

  110. W. Rudorff and E. Stumpp: Z. Naturforsch. 13b (1958), 459.

    Google Scholar 

  111. A. G. Freeman and J. P. Larkindale: J. Chem. Soc. (1969), A 1307.

    Google Scholar 

  112. G. R. Finlay and G. H. Fetterley: Ceramic Bull. 31 (1952), 141.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hooley, J.G. (1977). Elements. In: Lieth, R.M.A. (eds) Preparation and Crystal Growth of Materials with Layered Structures. Physics and Chemistry of Materials with Layered Structures, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2750-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2750-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8344-9

  • Online ISBN: 978-94-017-2750-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics