Skip to main content

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 194))

Introductory Abstract

We explore the sense in which the state of a physical system may or may not be regarded (an) observable in quantum mechanics. Simple and general arguments from various lines of approach are reviewed which demonstrate the following no-go claims: (1) the structure of quantum mechanics precludes the determination of the state of a single system by means of measurements performed on that system only; (2) there is no way of using entangled two-particle states to transmit superluminal signals. Employing the representation of observables as general positive operator valued measures, our analysis allows one to indicate whether optimal separation of different states is achieved by means of sharp or unsharp observables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. N. Herbert, Found. Phys. 12, 1171 (1982).

    Article  ADS  Google Scholar 

  2. D. Dieks, Phys. Lett. 92A, 271 (1982).

    Article  Google Scholar 

  3. P. Eberhard, Nuovo Cim. 46B, 392 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  4. G.C. Ghirardi, A. Rimini, T. Weber, Lett. Nuovo Cim. 27, 293 (1980).

    Article  MathSciNet  Google Scholar 

  5. R.J. Glauber, in New Techniques and Ideas in Quantum Measurement Theory,ed. D.M. Greenberger, The New York Academy of Sciences, New York, 1986, pp. 336–372, esp. p. 362ff.

    Google Scholar 

  6. L. Mandel, Nature 304, 188 (1983).

    Article  ADS  Google Scholar 

  7. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982).

    Article  ADS  Google Scholar 

  8. The question of the peaceful coexistence of quantum mechanics and relativity has been reviewed by A. Shimony, in S. Kamefuchi et al. (eds.), Foundations of Quantum Mechanics in the Light of New Technology,Tokyo: The Physical Society of Japan, 1984.

    Google Scholar 

  9. A formulation of the no-signaling proof that comprises general amplification and cloning procedures is given in H. Scherer, P. Busch, Phys. Rev. 47, 1647 (1993).

    Google Scholar 

  10. A. Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht, 1993, Chapter 9.

    MATH  Google Scholar 

  11. M.G. Alford, S. Coleman, J. March-Russell, Nuclear Physics B351, 735 (1991).

    Article  MathSciNet  Google Scholar 

  12. I.D. Ivanovic, Phys. Lett. A 123, 257 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Dieks, Phys. Leu. A 126, 303 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Peres, Phys. Lett. A. 128, 19 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Jaeger, A. Shimony, Phys. Lett. A 197, 83 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Royer, Phys. Rev. Lett. 73, 913 (1994); Erratum: ibid., February (1995).

    Google Scholar 

  17. We prove the following mathematical fact which will be used in several instances throughout this paper: for an operator E with 0 (t IE) 1 for all states 1, the relation (gyp 4) = 1, resp. (1/i4E1/i) = 0 (for states v, 1 r) is equivalent to Ev = ço, resp. Et/,= 0. The latter equations are obviously sufficient for the former. Their necessity follows from the observation that (gyp IEt;) = INM) = II~III2.

    Google Scholar 

  18. P. Busch, M. Grabowski, P. Lahti, Operational Quantum Physics, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Busch, P. (1997). Is the Quantum State (an) Observable?. In: Cohen, R.S., Horne, M., Stachel, J. (eds) Potentiality, Entanglement and Passion-at-a-Distance. Boston Studies in the Philosophy of Science, vol 194. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2732-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2732-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4809-7

  • Online ISBN: 978-94-017-2732-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics