Advertisement

Feynman Paths and Quantum Entanglement: Is There Any More to the Mystery

  • John Stachel
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 194)

Abstract

In his book More Than One Mystery,1 Mark Silverman takes issue with Feynman’s claim that “in reality it [the phenomenon of electron self-interference] contains the only mystery [of quantum mechanics]2. Silverman objects that: “As one directs attention away from systems of single particles to systems of correlated particles or particles and space together, other mysteries equally profound arise”, going on to list three such phenomena in support of his claim that:

There is more than one mystery in the singular and intriguing world of quantum mechanics:
  1. 1)

    The counter-intuitive, long range influence of one object on another, such as first underscored by Einstein;

     
  2. 2)

    The perplexing (from the standpoint of interpretation) physical influence of spatial topology in the nonlocal interaction of charged matter with electromagnetic fields, as emphasized by Aharonov and Bohm;

     
  3. 3)

    The strange connection between spin and statistics...

     

Keywords

Configuration Space Homotopy Class Quantum Entanglement Probability Amplitude Identical Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose, Satyendra Nath (1924), “Plancks Gesetz und Lichtquantenhypothese”, Z. Phys. 26, 178–181.ADSzbMATHCrossRefGoogle Scholar
  2. Dittrich, Walter and Reuter, Martin (1994), Classical and Quantum Dynamics from Classical Paths to Path Integrals, 2nd ed. ( Berlin/Heidelberg, Springer-Verlag).zbMATHCrossRefGoogle Scholar
  3. Einstein, Albert (1916), “Strahlungs-Emission und-Absorption nach der Quantentheorie”, Deutsche Physikalische Gesellschaft ( Berlin ). Verhandlungen 18, 318–323.Google Scholar
  4. Einstein, Albert (1924a), “Über den Ather”, Schweizerische naturforschende Gesellschaft. Verhandlungen 105, 85–93.Google Scholar
  5. Einstein, Albert (1924b), “Quantentheorie des einatomigen idealen Gases”, Preussische Akademie der Wissenschaften (Berlin). Physikalisch-mathematische Klasse. Sitzungsberichte, 261–267.Google Scholar
  6. Einstein, Albert (1925), “Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung”, Preussische Akademie der Wissenschaften (Berlin). Physikalisch-mathematische Klasse. Sitzungsberichte, 3–14.Google Scholar
  7. Einstein, Albert, Podolsky, Boris, and Rosen, Nathan (1935), “Can Quantum-mechanical Description of Physical Reality Be Considered Complete?”, Phys. Rev. 47, 777–780.Google Scholar
  8. Feynman, Richard P. (1948), “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys. 20, 367–387.Google Scholar
  9. Feynman, Richard (1985), QED: The Strange Theory of Light and Matter (Princeton, Princeton University Press).Google Scholar
  10. Feynman, Richard P., Leighton, R.B. and Sands, M. (1968), The Feynman Lectures on Physics, vol. 3 ( Reading, MA, Addison-Wesley ).Google Scholar
  11. Howard, Don (1990) “ ‘Nicht sein kann was nicht sein darf,’ or the Prehistory of EPR, 1909–1935: Einstein’s Early Worries About the Quantum Mechanics of Composite Systems”, in Arthur Miller, ed. Sixty-Two Years of Uncertainty ( N.Y., Plenum Press ), pp. 61–111.CrossRefGoogle Scholar
  12. Kleinert, Hagen, (1990), Path Integrals in Quantum Mechanics Statistics and Polymer Physics ( Singapore, World Scientific).zbMATHGoogle Scholar
  13. Laidlaw, Michael and Morette deWitt, Cecile (1971), “Feynman Functional Integrals for Systems of Indistinguishable Particles”, Phys. Rev. D 3, 1375–1378.Google Scholar
  14. Leinaas, J.M. and Myrhein, T. (1977), “On the Theory of Identical Particles”, Nuovo Cimento, 37B, 1–23.Google Scholar
  15. Mehra, Jagdish (1994), The Beat of a Different Drum: The Life and Science of Richard Feynman ( Oxford, Clarendon Press).zbMATHGoogle Scholar
  16. Schulman, Lawrence (1968), “A Path Integral for Spin”, Phys. Rev. 176, 1558–1569.Google Scholar
  17. Shimony, Abner (1989a), “Conceptual Foundations of Quantum Mechanics”, in Paul Davies, ed., The New Physics (Cambridge/New York/New Rochelle/ Melbourne/Sydney,Cambridge University Press), pp. 373–395.Google Scholar
  18. Shimony, Abner (1989b), “Search for a Worldview which Can Accommodate our Knowledge of Microphysics”, in James T. Cushing and Ernan McMullin, eds., Philosophical Consequences of Quantum Theory ( Notre Dame, IN, Notre Dame Press ), pp. 25–37.Google Scholar
  19. Silverman, Mark P. (1993), “More than One Mystery: Quantum Interference with Correlated Charged Particles and Magnetic Fields”, Am. J. Phys. 61, 514–523.Google Scholar
  20. Silverman, Mark P. (1995), More than One Mystery: Explorations in Quantum Interference ( New York/Berlin: Springer-Verlag).CrossRefGoogle Scholar
  21. Sinha, Sukanya and Sorkin, Rafael (1991), “A Sum-Over-Histories Account of an EPR(B) Experiment”, Found. Phys. Lett. 4, 303–335.Google Scholar
  22. Stachel, John Jay (1982), “Globally Stationary but Locally Static Space-times: A Gravitational Analog of the Aharonov-Bohm Effect”, Phys. Rev. D 26, 1281–1290.Google Scholar
  23. Stachel, John Jay (1986a), “Do Quanta Need a New Logic?”, in Robert G. Colodny, ed., From Quarks to Quasars: Philosophical Problems of Modern Physics ( Pittsburgh, PA, University of Pittsburgh Press ), pp. 229–347.Google Scholar
  24. Stachel, John Jay (1986b), “Einstein and the Quantum: Fifty Years of Struggle”, in ibid., pp. 349–385.Google Scholar
  25. Stachel, John Jay (1993), “The Other Einstein: Einstein Contra Field Theory”, Science in Context 6, 276–290.Google Scholar
  26. Stachel, John Jay (1994), “Bose and Einstein”, in Partha Ghose and Abhijit Mookerji, eds., Bose and 20th Century Physics (forthcoming).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • John Stachel
    • 1
    • 2
  1. 1.Boston UniversityUSA
  2. 2.Max-Planck-Institut für WissenschaftsgeschichteDeutschland

Personalised recommendations