Skip to main content

Membrane-associated phospholytic and lipolytic enzymes

  • Chapter
Plant Membranes

Abstract

The metabolism of plant membrane lipids is important not only in senescence-related processes but also is part and parcel of functional membrane turnover in active cells. Much of the research on phospholytic enzymes has been concerned with catabolic aspects and the possibility that the phospholipase family of enzymes which are the major membrane-associated lipolytic ones may also function metabolically is overlooked. The direction of the enzymatic reaction — leading either to phospholipid degradation or conversely to resynthesis — is dependent on degree of tissue hydration. Since most plant tissues are highly hydrated, the direction is generally a catabolic one in which case the “retailoring” mechanism is replaced by another group of enzymes — the acyl-transferases (the adjective acyl pertaining to the fatty acids that comprise the glycerolipid tails).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and recommended reading

  • Altschuler, M., Grayburn, W.S., Collins, G.B. and Hildebrand, D.F. 1989. Developmental expression of lipoxygenase in soybeans. Pl. Sc. 63: 151–8.

    Article  CAS  Google Scholar 

  • Ansell, G.B. and Spanner, S. 1982, Phosphatidylserine, phosphatidylethanolamine and phosphatidyicholine. pp. 1–50. In: Eds. J.N. Hawthorne and G.B. Ansell. Phospholipids. Elsevier, Amsterdam.

    Google Scholar 

  • Bamberger, E.S., Alter, M., Landau, E.M. and Leshem, Y.Y. 1989. Biophysical effects of superoxide on surface parameters of a model membrane. pp. 113–6. In: Eds. O. Hayaishi, E. Niki, M. Kondo and T. Yoshikawa. Medical, Biochemical and Chemical Aspects of Free Radicals. Elsevier, Amsterdam.

    Google Scholar 

  • Borowitz, S.M. and Montgomery, C. 1989. The role of phospholipase A2 in microsomal lipid peroxidation induced with t-butyl hydroperoxide. Biochem. Biophys. Res. Comm. 158: 1021–8.

    Article  PubMed  CAS  Google Scholar 

  • Bousquet, J.F. and Thimann, K.V. 1984. Lipid peroxidation forms ethylene from ACC and may operate in leaf senescence. Proc. Nat. Acad. Sci. USA 81: 1724–7.

    Article  PubMed  CAS  Google Scholar 

  • Brash, A.R., Baertschi, S.W., Ingram, C.D. and Harris, T.M. 1988. Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides. Proc. Nat. Acad. Sci. USA 85: 3382–6.

    Article  PubMed  CAS  Google Scholar 

  • Brindley, D.N. 1984. Intracellular translocation of phosphatidate phosphohydralyse and its possible role in the control of glycolipid synthesis. Prog. Lip. Res. 23: 115–33.

    Article  CAS  Google Scholar 

  • Davood, H. and Biacs, P.A. 1988. Some properties of tomato lipoxygenase. Act. Aliment. 17: 53–65.

    Google Scholar 

  • Demel, R., Geurt, W., van Kessel, A., Zwaal, R., Roelofsen, B. and van Deenen, L.M. 1975. Relations between various phopholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim. Biophys. Acta 406: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • DiNola, L. and Mayer, A.M. 1986. Effect of temperature on glycerol metabolism in membranes and on phospholipase C and D of germinating pea embryos. Phytochem. 25: 2255–9.

    Article  CAS  Google Scholar 

  • Duggelin, T., Bartlik, K., Gut, H., Matile, P. and Thomas, H. 1988. Leaf senescence in Festuca pratensis: accumulation of lipofuscin-like compounds. Physiol. Plant. 74: 131–6.

    Article  Google Scholar 

  • Galliard, T. 1980. Degradation of acyl lipids: hydrolytic and oxidative enzymes. pp. 85–116. In: Ed. P.K. Stumpf. The Biochemistry of Plants. Vol. 4. Academic Press, New York.

    Google Scholar 

  • Grechkin, A.N., Kuramshin, R.A., Safonava, E.Y., Yefremov, Y.J., Latypov, S.K., Ilyasov, A.V. and Tarchevsky, I.A. 1991. Double hydroperoxidation of a-linolenic acid by potato tuber lipoxygenase. Biochim. Biophys. Acta, 1081: 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, S. and Leshem, Y. 1978. Lowering of endogenous lipoxygenase activity in Pisum sativum foliage by cytokinin as related to senescence. Physiol. Plant 43: 359–62.

    Article  CAS  Google Scholar 

  • Hatanka, A., Kajiwara, T. and Sekiya, J. 1987. Biosynthetic pathway for C-6 aldehydes formation from linolenic acid in green leaves. Chem. Phys. Lipid 44: 341–61.

    Article  Google Scholar 

  • Hatanka, A., Kajiwara, T. and Matsui, K. 1990. Enzymatic oxygenative-cleavage reaction of 2-linolenic acid in tea leaves. pp. 295–7. In: Eds. P.J. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, Colchester and London.

    Google Scholar 

  • Hildebrand, D.F., Zuang, H., Hamilton-Kemp, I.R. and Loughrin, J.H. 1990. pp. 307–9. In: Eds. P.J. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, Colchester and London.

    Google Scholar 

  • Irvine, R.F., Letcher, A.J. and Dawson, R.M.C. 1980. Phosphatidyl-phosphodiesterase in higher plants. Biochem. Jour. 192: 279–83.

    CAS  Google Scholar 

  • Jain, M.K., Rogert, R.J., Maracek, J.F., Ramirez, F. and Eibel, H. 1986. Effect of the structure of phospholipid on the kinetics of intravesicle scooting of phospholipase A2. Biochim. Biophys. Acta 860: 461–74.

    Google Scholar 

  • Leshem, Y. 1988. Plant senescence processes and free radicals. Free Rad. Biol. Med. 5: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Leshem, Y.Y. 1990. Evidence for the presence and mode of action of a membrane-associated plant phospholipase A2. pp. 53–5. In: Eds. P.J. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portand Press, Colchester and London.

    Google Scholar 

  • Leshem, Y.Y., Cojocaru, M., Mergel, S., El-Ani, D. and Landau, E.M. 1990. A biophysical study of abscisic acid interaction with a phospholipid membrane component. New Phytol. 116: 487–98.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Halevy, A.H. and Frenkel, C. 1986. Processes and Control of Plant Senescence. Elsevier, Amsterdam. 215 pp.

    Google Scholar 

  • Lynch, D.V., Sridhara, S. and Thompson, J.E. 1985. Lipoxygenase generated hydro-peroxides account for the non-physiological features of ethylene formation from ACC by microsomal membranes of carnations. Planta 164: 121–5.

    Article  CAS  Google Scholar 

  • Merzlyak, M.A., Rumyantseva, V., Shevyrova, V. and Gusev, M. 1983. Further investigation of liposoluble fluorescent compounds in senescing plant cells. J. Exp. Bot. 34: 604–9.

    Article  CAS  Google Scholar 

  • Moreau, R. and Morgan, P. 1988. Proteolytic activation of a lipolytic enzyme activity in potatoes. Plant Sci. 55: 205–11.

    Article  CAS  Google Scholar 

  • Morré, D.J., Marmé, D.M. and Penel, C. 1990. Calmodulin-calcium stimulation of a 2,4-D responsive phospholipase of soybean membranes. Protoplasma (In press).

    Google Scholar 

  • Paliyath, G. and Thompson, J.E. 1987. Calcium and calmodulin regulated breakdown of phospholipid by microsomal membranes from bean cotyledons. Pl. Physiol. 83: 63–8.

    Article  CAS  Google Scholar 

  • Parry, A.D. and Horgan, R. 1991. Carotenoids and abscisic acid (ABA) biosynthesis in higher plant. Physiol. Plant. 82: 320–6.

    Article  CAS  Google Scholar 

  • Peterman, T.K. and Siedow, J.N. 1985. Behavior of lipoxygenase during establishment, senescence and rejuvenation of soybean cotyledons. Plant. Physiol. 78: 690–5.

    Article  PubMed  CAS  Google Scholar 

  • Poca, E., Rabinovitch-Chable, H., Cook-Moreau, J., Pages, M. and Rigaud, M. 1990. Lipoxygenase from Zea mays. Purification and chemical characteristics. Biochim. Biophys. Acta 1045: 107–14.

    Google Scholar 

  • Putney, J.W., Poggioli, P. and Weiss, S.G. 1981. Receptor regulation of calcium release and calcium permeability in parotid glands. Phil Trans. Roy. Soc. Lond. Ser. 13. 296: 36–45.

    Google Scholar 

  • Schalkwijk, C.G., Mark, F., van den Bosch, H. 1990. Studies on the acyl chain selectivity of cellular phospholipase A2. Biochim. Biophys. Acta 1044: 139–40.

    Article  PubMed  CAS  Google Scholar 

  • Sembdner, G., Meyer, A., Miersch, O. and Bruckner, C. 1990. Metabolism of jasmonic acid. pp. 374–9. In: Eds. R.P. Pharis and S.B. Rood. Plant Growth Substances 1988. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Sridhara, T. and Leshem, Y. 1986. Phospholipid catabolism and senescence of pea foliage membranes; parameters of Ca2+ calmodulin phospholipase A2 induced changes. New Phytol. 102: 5–16.

    Article  Google Scholar 

  • Stinson, S.C. 1989. Better understanding of arthritis leading to new drugs to treat it. Chem. Eng. News 67: 37–70.

    Article  Google Scholar 

  • Tarchevsky, I.A., Kuramshin, R.A. and Grechkin, A.N. 1990. Conversion of alinolenate into conjugated trienes and oxotrienes by potato tuber lipoxygenase. pp. 298–300. In: Eds. P.J. Quinn and J.L. Harwood. Plant Lipid Biochemistry, Structure and Function. Portland Press, London and Colchester.

    Google Scholar 

  • Ueda, J., Mizumoto, T. and Kato, J. 1991. Quantitative changes of abscisic acid and methyl jasmonate correlated with vernal leaf abscission of Ficus superba var. japonica. Biochem. Physiol. Pflanz. 187: 203–10.

    CAS  Google Scholar 

  • van den Bosch, H. 1982. Phospholipases. pp. 313–58. In: Eds. J.N. Hawthorne and G.B. Ansell. Phospholipids. Elsevier, Amsterdam.

    Google Scholar 

  • Vick, B.A. 1991. A spectrophotometric assay for hydroperoxide-lyase. Lipids. 26: 315–20.

    Article  CAS  Google Scholar 

  • Vick, B.A. and Zimmerman, D.C. 1987. Oxidative systems for modification of fatty acids: the lipoxygenase pathway. pp. 54–90. In: Eds. P.K. Stumpff and E.E. Conn. The Biochemistry of Plants. Vol. 9. Academic Press, London, New York.

    Google Scholar 

  • Wong, P.Y.K. and Cheung, W.Y. 1979. Calmodulin stimulates human platelet phospholipase A2. Biochem. Biophys. Res. Comm. 90: 473–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leshem, Y.Y. (1992). Membrane-associated phospholytic and lipolytic enzymes. In: Plant Membranes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2683-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2683-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4096-1

  • Online ISBN: 978-94-017-2683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics