Skip to main content

Plant membrane biophysics in development and senescence

  • Chapter

Abstract

Based essentially upon a biophysical approach but couched in terminology understandable to the average plant biologist the present chapter will highlight some of the current issues of membrane biophysics which at present are commanding considerable attention in the field of both developmental and senescence physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and recommended reading

  • Aloia, R.C. (Ed.). 1983–5. Membrane Fluidity in Biology. Vols. I—III. Academic Press, New York, London.

    Google Scholar 

  • Bamberger, E.S., Alter, M., Landau, E.M. and Leshem, Y.Y. 1988. Biophysical effects of superoxide on surface parameters of a model membrane. pp. 113–6. In: Eds. O. Hayaishi, C. Niki, M. Kondo and T. Yoshikawa. The Medical, Biochemical and Chemical Aspects of Free Radicals. Elsevier, Amsterdam.

    Google Scholar 

  • Batty, I., Nahorski, S.R. and Irvine, R.F. 1985. Rapid formation of inositol 1,3,4,5 tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232: 211–5.

    PubMed  CAS  Google Scholar 

  • Birdie, K.S. 1987. Dipalmitoyllecithin monolayer at the air/water interface. Langmuir 3: 132–3.

    Article  Google Scholar 

  • Borochov, A., Halevy, A.H., Borochov, H., and Shinitzky, M. 1978. Microviscosity of rose petals’ plasmalemma as affected by age and environmental factors. Plant Physiol. 61: 812–5.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, R.R. 1984. Effect of unsaturated fatty acids on membrane structure and enzyme kinetics. Prog. Lip. Res. 23: 69–96.

    Article  CAS  Google Scholar 

  • Brown, D.J., Dupont, F.M. 1989. Lipid composition of plasma membranes prepared from roots of barley. Plant Physiol. 90: 955–61.

    Article  PubMed  CAS  Google Scholar 

  • Coolbear, K.P., Berde, C.B. and Keough, K.M.W. 1983. Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed acid phosphatidylcholines. Biochemistry 22: 1466–73.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Crowe, L.M., Carpenter, J.F. and Winston, C.H. 1987. Stabilization of dry phospholipid bilayers by sugars. Biochem. J. 242: 1–10.

    PubMed  CAS  Google Scholar 

  • Crowe, J.H., Hoekstra, F.A. and Crowe, L.M. 1989. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc. Natl. Acad. Sci. USA 86: 520–3.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. and Hope, M.J. 1986. Physical properties and functional roles of lipids in membranes. pp. 25–72. In: Eds. D.E. Vance and J.E. Vance. Biochemistry of Lipids and Membranes. Benjamin Cummings, Menlo Park, California.

    Google Scholar 

  • Davis, P.J., Fleming, B.D., Coolbear, K.P. and Keough, K.M.V. 1981. Gel to liquid-crystalline transition temperatures of water dispensions of two pairs of positional isomers of unsaturated mixed acid phosphatidylcholines. Biochemistry 20: 3633–6.

    Article  PubMed  CAS  Google Scholar 

  • Deckman, M., Haimovitz, R. and Shinitzky, M. 1985. Selective release of integral proteins from human erythrocytes by hydrostatic pressure. Biochem. Biophys Acta 821: 334–40.

    Article  Google Scholar 

  • de Gier, J., van Echleld, C., van der Steen, A., Noordau, P.C., Verklij, A.J. and de Kruijff, B. 1982. Lipid organization and barrier functions of membranes. pp. 315–25. In: Eds. J. Wintermans and P. Kuipers. Biochemistry and Metabolism of Plant Lipids. Elsevier, Amsterdam.

    Google Scholar 

  • de Kruijff, B., Cullis, P.R. and Verklij, A.J. 1980. Non bilayer lipid structures in model and biological membranes. TIBS 79–81.

    Google Scholar 

  • Einstein, A. 1956. Investigations on the Theory of the Brownian Movement. Ed. with notes R. Furth. Dover Press, New York.

    Google Scholar 

  • Galston, A.W. and Kaur-Sawnhey, R. 1983. Polyamines: are they a new class of plant growth regulators? pp. 451–96. In: Ed. P.E. Wareing. Plant Growth Substances 1982. Academic Press, New York.

    Google Scholar 

  • Gennis, R.B. 1989. Biomembranes: Molecular Structure and Function. p. 184. Springer Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Harwood, J.L. 1987. Lung surfactant. Prog. Lip. Res. 26: 211–56.

    Article  CAS  Google Scholar 

  • Heremans, K. 1982. High pressure effects in proteins and other biomolecules. Ann. Rev. Biophys. Bioeng. 11: 1–21.

    Article  CAS  Google Scholar 

  • Jones, C.P. and Paleg, L.G. 1984. Complex formation between IAA and phospholipid components in aqueous media. 2. Interaction of auxins and related compounds with phosphatidyl membranes. Biochemistry 23: 1521–4.

    Article  CAS  Google Scholar 

  • Kjaer, K., Als-Nielsen, J., Helm, C.A., Laxhuber, L.A.A. and Möhwald, H. 1987. Ordering in lipid monolayers. Phys. Rev. Lett. 58: 2224–6.

    Article  PubMed  CAS  Google Scholar 

  • Landau, E.M. and Leshem, Y.Y. 1988. Biophysical interactions of membrane anionic phospholipids with pH, calcium and auxins. Journ. Exp. Bot. 39: 1689–97.

    Article  CAS  Google Scholar 

  • Larsson, C., Moller, I.M. and Widell, S. 1990. Introduction to the plant plasma membrane - its molecular composition and organization. In: Eds. C. Larsson and I.M. Moller, pp. 1–15. The Plant Plasma Membrane. Springer Verlag, Berlin-Heidelberg.

    Chapter  Google Scholar 

  • Legge, R.L., Cheng, K.H., Lepock, J.R. and Thompson, J.E. 1985. Differential effects of senescence on the molecular organization of membrane in ripening tomato fruit. Jour. Physiol. 81: 954–9.

    Google Scholar 

  • Lentz, B. 1989. Membrane fluidity as detected by diphenylhexatriene probes. Chem. Phys. Lipids 50: 171–90.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. 1987. Cat+ and intermolecular bridging of membranal phospholipids and proteins. pp. 225–7. In: Eds. P.K. Stumpf, J.B. Mudd, W.D. Ness. The Metabolism, Structure and Function of Plant Lipids. Plenum Press, California.

    Google Scholar 

  • Leshem, Y.Y. 1989. The function of membrane glycerolipid fatty acid unsaturation and cell cycle control: a biophysical approach. pp. 198–202. In: Eds. P. Biacs, T.

    Google Scholar 

  • Gluiz and T. Brenner. The Biological Role of Plant Lipids. Plenum, New York and Academiai Kiado, Budapest.

    Google Scholar 

  • Leshem, Y.Y. 1991. Evidence for the presence and mode of action of a membrane associated plant phospholipase A2. pp. 53–5. In: Eds. P.L. Quinn and J.L. Harwood, Plant Lipid Biochemistry. Structure and Utilization. Portland Press, Colchester and London.

    Google Scholar 

  • Leshem, Y.Y. and Bar-Nes, G. 1987. Hormone receptor manipulation by hydrostatic pressure: interaction between calcium: membrane components and PI in pea foliage membranes. pp. 155–62. In: Ed. D. Klämbt. Plant Hormone Receptors. Springer Verlag, Berlin.

    Google Scholar 

  • Leshem, Y.Y., Cojocaru, M., Magel, S., El-Ani, D. and Landau, E.M. 1990. A biophysical study of abscisic acid interaction with membrane phospholipid components. New Phytol. 116: 487–98.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Halevy, A.H. and Frenkel, C. 1986. Processes and Control of Plant Senescence. Elsevier, Amsterdam. pp. 61–3.

    Google Scholar 

  • Leshem, Y.Y. and Inbar, M. 1978. Resistance to gibberellin induced changes of lipid fluidity in wheat embryo mitochondrial membranes as assessed by the fluorescent probe, DPH. J. Exp. Bot. 29: 671–5.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Landau, E.M. and Deutsch, M. 1988. A monolayer model study of surface tension-associated parameters of membrane phospholipids: effect of unsaturation of fatty acyl tails. Jour. Exp. Bot. 39: 1679–87.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Sridhara, S. and Thompson, J.E. 1984. Involvement of calcium and calmodulin in membrane deterioration during senescence of pea foliage. Plant Physiol. 75: 329–35.

    Article  PubMed  CAS  Google Scholar 

  • Lindblom, G., Brental, T., Sjolund, M., Wikander, G. and Weslander, A. 1986. Phase equilibria of membrane lipids from Acholeplasma laidlawii: Importance of a single lipid forming non-lamellar phases. Biochem. 25: 7502–10.

    Article  CAS  Google Scholar 

  • Lindblom, G. and Rilfors, L. 1989. Cubic phases and isotropic structures formed by membrane lipids - possible biological relevance. Biochim. Biophys. Act. 988: 2 2156.

    Google Scholar 

  • Lindstedt, S. and Liljenberg, C. 1990. On the periodic minimal surface structure of the plant prolamellar structure. Physiol. Plant 80: 1–4.

    Article  Google Scholar 

  • McKersie, B., Thompson, T.E. and Brandon, J.K. 1976. X ray diffraction evidence for decreased lipid fluidity in senescent membranes from cotyledons. Can. J. Bot. 54: 1974–8.

    Article  Google Scholar 

  • Merril, A.H. and Nichols, J.W. 1985. Techniques for studying phospholipid membranes. pp. 61–96. In: Ed. J.F. Kuo. Phospholipids and Cellular Regulation, Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  • Metcalf, T.N., Villanueva, M.A., Schindler, M. and Wang, J.L. 1986. Monoclonal antibodies directed against protoplasts of soybean cells: analysis of the lateral mobility of plasma-membrane antibody MVS-1. Jour. Cell. Biol. 102: 1350–7.

    Article  CAS  Google Scholar 

  • Metcalf, T.N., Wang, J.L. and Schindler, M. 1980. Lateral diffusion of phospholipids in the plasma membrane of soybean protoplasts: evidence for membrane lipid domains. Proc. Nat. Acad. Sci. USA 83: 95–9.

    Article  Google Scholar 

  • Morré, D.J. and Bracker, C.E. 1976. Ultrastructural alteration of plant plasma membrane induced by auxin and calcium ions. Plant Physiol. 58: 544–7.

    Article  PubMed  Google Scholar 

  • Morré, D.J., Crowe, J.H., Morré, D.M., and Crowe, L.M. 1987. Infrared spectroscopic evidence for a conformational alteration of plant plasma membranes upon exposure to the growth hormone analogue, 2,4-D. Biochem. Biophys. Res. Comm. 147: 506–12.

    Article  PubMed  Google Scholar 

  • Nur, T., Ben Arie, R., Lurie, S. and Altman, A. 1986. Involvement of divalent cations in maintaining cell membrane integrity in stressed apple fruit tissue. Jour. Pl. Phys. 125: 47–60.

    CAS  Google Scholar 

  • Palmgren, M.G. and Sommarin, M. 1989. Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 90: 1009–14.

    Article  PubMed  CAS  Google Scholar 

  • Pauls, K.P. and Thompson, J.E. 1980. In vitro simulation of senescence related membrane damage by ozone induced lipid peroxidation. Nature 283: 504–9.

    Article  PubMed  CAS  Google Scholar 

  • Pauls, K.P. and Thompson, J.E. 1982. Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage. Plant Cell Physiol. 23: 821–32.

    CAS  Google Scholar 

  • Pike, C.S. 1982. Membrane lipid physical properties in annuals grown under contrasting thermal regimes. Plant Physiol. 52: 236–9.

    Google Scholar 

  • Platt-Aloia, K.A. and Thompson, W.W. 1987. Freeze fracture evidence for lateral phase separations in the plasmalemma of chilling injured avocado fruit. Protoplasma 136: 71–80.

    Article  Google Scholar 

  • Post, N. and van Golde, L.M.G. 1988. Metabolic and developmental aspects of the pulmonary surfactant system. Biochim. Biophys. Act. 947: 249–86.

    Article  CAS  Google Scholar 

  • Quinn, P. 1989. The phase behaviour of membrane lipids and the organization of the photosynthetic membrane. pp. 209–15. In: Eds. P. Biacs, K. Gruiz and T. Kremmer. Biological Role of Plant Lipids. Akad. Kiado, Budapest. Plenum Press, New York.

    Google Scholar 

  • Raison, J.K., Pike, C.S. and Berry, J.N. 1982. Growth temperature induced alterations in the thermotropic properties of Nerium oleander membrane lipids. Plant Physiol. 70: 215–8.

    Article  PubMed  CAS  Google Scholar 

  • Rawyler, A. and Siegenthaler, P.A. 1989. Changes in the molecular organization of MGDG between resting and functional states of thylakoid membranes. pp. 2256. In: Eds. P. Biacs, K. Gruiz and T. Kremmer. Biological Role of Plant Lipids. Akad. Kiado Budapest. Plenum Press, New York.

    Google Scholar 

  • Richter, C. 1987. Biophysical consequences of lipid peroxidation in membranes. Chem. Pys. Lip. 44: 175–90.

    Article  CAS  Google Scholar 

  • Roberts, G. (Ed.) 1990. Langmuir-Blodgett Films. Plenum, New York.

    Google Scholar 

  • Rojas, E. and Tobias, J.M., 1965. Membrane model association of inorganic cations with phospholipid monolayers. Biochim. Biophys. Acta, 94: 394–404.

    Article  PubMed  CAS  Google Scholar 

  • Rupert, L.A.M. 1988. The head group conformation and dynamical behavior of didodecylphosphate bilayer membranes. Jour. Coll. Interface Sci. 125: 286–94.

    Article  CAS  Google Scholar 

  • Saffman, P.C. and Delbruck, M. 1975. Brownian movement in biological membranes. Proc. Nat. Acad. Sci. USA 72: 3111–3.

    Google Scholar 

  • Schroeder, F. 1984. Role of membrane lipid asymmetry in aging. Neurobiol. Aging 5: 323–33.

    Article  PubMed  CAS  Google Scholar 

  • Selstam, E., Brentel, J. and Lindblom, G. 1990. The phase structure of galactolipids and their role in the formation of the prolamellar body. 14:843–8. In: Ed. M. Balcheffsky. Current Research in Photosynthesis III. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Shah, O.H. and Schulman, J.H. 1967. The ionic structure of lecithin monolayers. Jour. Lipid Res. 8: 227–33.

    CAS  Google Scholar 

  • Shinitzky, M. 1984. Membrane fluidity and cellular functions. pp. 1–15. In: Ed. M. Shinitzky. Physiology of Membrane Fluidity, Vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Shinitzky, M. and Barenholz, Y. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochem. Biophys. Acta 515: 367–94.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M. and Inbar, M. 1974. Difference in microviscosity induced by different cholesterol levels in surface membrane lipid bilayer of normal lymphocytes and malignant lymphoma cells. Jour. Mol. Biol. 85: 603–15.

    Article  CAS  Google Scholar 

  • Siegel, D.P. 1986. Inverted intermediates and the transitions between lamellar, cubic and inverted hexagonal amphiphile phases. Chem. Phys. Lip. 42: 279–301.

    Article  CAS  Google Scholar 

  • Sklar, L.A. 1980. The partition of cis-parinaric acid and trans-parinaric acid among aqueous fluid lipid and solid lipid phases. Molec. Cell. Biochem. 32: 169–75.

    Article  PubMed  CAS  Google Scholar 

  • Skyamsander, E., Gruner, S.M., Tate, M.W., Turner, D.C. and So, P.T.C. 1988. Observation of inverted cubic phase in hydrated dioleoylphosphatidylethanolamine membranes. Biochemistry 27: 2332–6.

    Article  Google Scholar 

  • Sridhara, S. and Leshem, Y. 1986. Phospholipid catabolism and senescence of pea foliage membranes: parameters of Cat+: calmodulin: phospholipase A2 induced changes. New Phytol. 102: 5–16.

    Article  Google Scholar 

  • Stillwell, W., Brengle, B., Belcher, D. and Wassal, S.R. 1987. Comparison of effects of ABA and IAA on phospholipid bilayers. Phytochem. 26: 3145–50.

    Article  CAS  Google Scholar 

  • van der Meer, W. 1984. Physical aspects of membrane fluidity. pp. 53–71. In: Ed. M. Shinitzky. Physiology of Membrane Fluidity, Vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • van Paridon, P.A., de Kruijff, B., Ouwerkerk, R. and Wirtz, K.W.A. 1986. Polyphosphoinositides undergo charge neutralization in the physiolgical pH range; a 31P NMR study. Biochim. Biophys. Acta 877: 216–9.

    Article  PubMed  Google Scholar 

  • Vigh, L., Horvath, I., Woltjes, T., Farkas, P., van Hasselt, P.J.C. and Kuiper, P. 1987. Combined ESR, X-ray diffraction studies on phospholipid vesicles obtained from cold hardened wheats. Planta 170: 14–9.

    Article  CAS  Google Scholar 

  • Walko, R.M. and Nothnagel, E.D. 1989. Lateral diffusion of proteins and lipids in the plasma membrane of rose protoplast. Protoplasma 152: 46–56.

    Article  Google Scholar 

  • Wier, M. and Edidin, M. 1988. Constraint of the translation diffusion of a membrane glycoprotein by its external domains. Science 242: 412–4.

    Article  PubMed  CAS  Google Scholar 

  • Wills, R.H., Lee, T.H., Graham, D., McGlasson, W.B. and Hall, E.G. 1981. Postharvest. An Introduction to the Physiology and Handling of Fruit and Vegetables. Avi Publishers, Westport, CT.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leshem, Y.Y. (1992). Plant membrane biophysics in development and senescence. In: Plant Membranes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2683-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2683-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4096-1

  • Online ISBN: 978-94-017-2683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics