Skip to main content

Cryopreservation and Germplasm Storage

  • Chapter
Plant Cell and Tissue Culture

Abstract

Cryopreservation is defined as the viable freezing of biological material and their subsequent storage at ultra-low temperatures, preferably at that of liquid nitrogen. The development of cryopreservation strategy for plant cells and organs has followed the advances made with mammalian systems, albeit several decades later. Even for mammalian systems, the discovery of chemicals with cryoprotective properties was a significant step towards the development and refinement of cryopreservation technology. A major breakthrough in this context was the finding that glycerol was capable of protecting avian spermatozoa from freezing injury (Polge et al., 1949). This generated widespread enthusiasm and renewed interest among people interested in low temperature preservation in such fields as biology and medicine. Since the early 1950’s a number of low molecular weight neutral solutes have been identified as potential cryoprotectants, the most commonly recognized ones being dimethylsulfoxide (DMSO or Me2SO) and glycerol. Dimethylsulfox-ide, originally used to prevent freezing damage to human and bovine red blood cells and bull spermatozoa (Lovelock and Bishop, 1959), has become a universal cryoprotectant. In recent years, considerable progress has been made in the low temperature preservation of red cells and platelets, leucocytes, bone marrow cells, protozoa, and helminth parasites of man and animals, insects and their cells and microorganisms (Ashwood-Smith and Farrant, 1980). Despite all these advances, unlike plants, most attempts to preserve animal organs at ultra-low temperature have met with limited success.

NRCC Publication No. 32487.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.O. (1979). Cryopreservation of apical meristems and cells of carnation (Dianthus caryophyllus). Cryobiology 16: 583.

    Article  Google Scholar 

  • Ashwood-Smith, M.J. and Farrant, J. (1980). Low Temperature Preservation in Medicine and Biology. M.J. Ashwood-Smith and J. Farrant (eds.), University Park Press, England, p. 323.

    Google Scholar 

  • Bagniol, S., Engelmann, F., Monfort, S. and Ferry, M. (1990). First successful cryopreservation of date palm (Phoenix dactylifera L.) meristems. In: Abstracts: 7th Intl. Cong. Plant Tissue and Cell Culture, Amsterdam, p. 374.

    Google Scholar 

  • Bajaj, Y.P.S. (1976). Regeneration of plants from cell suspensions frozen at —20°, —70° and —196 °C. Physiol Plant. 37: 263–268.

    Article  Google Scholar 

  • Bajaj, Y.P.S. (1977a). Clonal multiplication and cryopreservation of cassava through tissue culture. Crop Improv. 4: 198–204.

    Google Scholar 

  • Bajaj, Y.P.S. (1977b). Survival of Nicotiana and Atropa pollen embryos frozen at —196 °C. Curr. Sci. 46: 305–307.

    Google Scholar 

  • Bajaj, Y.P.S. (1978). Tuberization in potato plants regenerated from freeze-preserved meristems. Crop Improv. 5: 137–141.

    Google Scholar 

  • Bajaj, Y.P.S. (1979). Freeze preservation of meristems of Arachis hyppogaea and Cicer arietinum. Indian J. Exp. Biol. 17: 1405–1407.

    Google Scholar 

  • Bajaj, Y.P.S. (1981). Growth and morphognesis in frozen (-196 °C) endosperm and embryos of rice. Curr. Sci. 50: 947–948.

    Google Scholar 

  • Bajaj, Y.P.S. (1982). Survival of anther-and ovule-derived cotton callus frozen in liquid nitrogen. Curr. Sci. 51: 139–140.

    Google Scholar 

  • Bajaj, Y.P.S. (1983a). Cassava plants from meristem cultures freeze-preserved for three years. Field Crop Res. 7: 161–167.

    Article  Google Scholar 

  • Bajaj, Y.P.S. (1983b). Survival of somatic hybrid protoplasts of wheat x pea and rice x pea subjected to -196°C. Indian J. Exp. Biol. 21: 120–122.

    Google Scholar 

  • Bajaj, Y.P.S. (1983c). Regeneration of plants from pollen embryos of Arachis, Brassica and Triticum spp. cryopreserved for one year. Curr. Sci. 52: 484–486.

    Google Scholar 

  • Bajaj, Y.P.S. (1984). Induction of growth in frozen embryos of coconut and ovules of citrus. Curr. Sci. 53: 1215–1216.

    Google Scholar 

  • Bajaj, Y.P.S. (1988). Regeneration of plants from frozen (-196 °C) protoplasts of Atropa belladonna L., Datura innoxia Mill and Nicotiana tabacum L. Indian J. Exp. Biol. 26: 289292.

    Google Scholar 

  • Bapat, V.A. and Rao, P.S. (1988). Sandalwood plantlets from ‘synthetic seeds’. Plant Cell Rep. 7: 434–436.

    Article  Google Scholar 

  • Bapat, V.A., Mathre, M. and Rao, P.S. (1987). Propagation of Morus indica L. (mulberry) by encapsulated shoot buds. Plant Cell Rep. 6: 393–395.

    Article  Google Scholar 

  • Benson, E.E., Marshall, H. and Withers, L.A. (1984). A light and electron microscopical study of the cryopreservation of cultured shoot-tips of Brassica napus and Solanum tuberosum. In: Abstracts: Plant Tissue Culture and Its Agricultural Applications, Univ. of Nottingham School of Agriculture, Nottingham, England, p. 95.

    Google Scholar 

  • Benson, E.E., Harding, E. and Smith, H. (1989). Variation in recovery of cryopreserved shoot-tips of Solanum tuberosum exposed to different pre-and post-freeze light regimes. CryoLetters 10: 323–344.

    Google Scholar 

  • Bertrand-Desbrunais, A., Fabre, J., Engelmann, F., Dereuddre, J. and Charrier, A. (1988). Reprise de l’embryogenèse adventive d’embryons somatique de cafeier (Coffea arabica) après leur congelation dans l’azote liquide. C.R. Acad. Sci. Paris. Sér. III. 307: 795–801.

    Google Scholar 

  • Binder, W.D. and Zaerr, J.B. (1980a). Freeze preservation of suspension cultured cells of a gymnosperm Douglas fir. Cryobiology 17: 624.

    Google Scholar 

  • Binder, W.D. and Zaerr, J.B. (1990b). Freeze preservation of suspension cultured cells of a hardwood poplar. Cryobiology 17: 624–625.

    Google Scholar 

  • Boucaud (de), M-T. and Cambecedes, J. (1988). The use of 1,2 propanediol for cryopreservation of recalcitrant seeds: The model case of Zea mays imbibed seeds. Cryo-Letters 9: 94–101.

    Google Scholar 

  • Boucaud (de), M-T., Brison, M., Ledoux, C., Germain, E. and Lutz, A. (1991). Cryopreservation of embryonic axes of recalcitrant seed: Juglans regia L. cv. Franquette. Cryo-Letters 12: 163–166.

    Google Scholar 

  • Bouman, H. and de Klerk, G.J. (1990). Cryopreservation of lily meristems. In: Abstracts: 7th Intl. Cong. Plant Tissue and Cell Culture, Amsterdam, p. 374.

    Google Scholar 

  • Brown, G.N. (1978). Protein synthesis mechanisms relative to cold hardiness. In: Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop Implications. P.H. Li and A. Sakai (eds.), Academic Press, New York, pp. 153–164.

    Google Scholar 

  • Butenko, R.G., Popov, A.S., Volkova, L.A., Chernyak, D.N. and Nosov, A.M. (1984). Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen. Plant Sci. Lett. 33: 285–292.

    Google Scholar 

  • Cachita, C.D., Zapirtan, M., Craciun, C. and Vicol, A. (1990). Regeneration from alfalfa and clover calli following their 40 days long preservation in liquid nitrogen - electronmicroscopic aspects. In: Abstracts: 7th Intl. Cong. Plant Tissue and Cell Culture, Amsterdam, p. 375.

    Google Scholar 

  • Caswell, K.L., Tyler, N.J. and Stushnoff, C. (1986). Cold hardening of in vitro apple and saskatoon shoot cultures. Hort. Sc. 210: 1207–1209.

    Google Scholar 

  • Cella, R., Colombo, R., Galli, M.G., Nielsen, E., Rollo, F. and Sala, F. (1982). Freeze preservation of rice cells: A physiological study of freeze-thawed cells. Physiol. Plant. 55: 279–284.

    Google Scholar 

  • Chaudhury, R., Radhamani, J. and Chandel, K.P.S. (1991). Preliminary observations on the

    Google Scholar 

  • cryopreservation of desiccated embryonic axes of tea (Camellia sinensis (L.) O. Kuntze) seeds for genetic conservation. Cryo-Letters 12:31–36.

    Google Scholar 

  • Chen, H.H., Li, P.H. and Brenner, M.L. (1983). Involvement of abscisic acid in potato cold acclimation. Plant Physiol. 71: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.H.H. and L.V. Gusta. (1983). Abscisic acid induced freezing resistance in cultured plant cells. Plant Physiol. 73: 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.H.H., Kartha, K.K., Leung, N.L., Kurz, G.W.G., Chatson, K.B. and Constabel, F.C. (1984a). Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol. 75: 726–731.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.H.H., Kartha, K.K., Constabel, F.C. and Gusta, L.V. (1984b). Freezing characteristics of cultured Catharanthus roseus (L.) G. Don cells treated with dimethylsulfoxide and sorbitol in relation to cryopreservation. Plant Physiol. 75: 720–725.

    Google Scholar 

  • Chen, T.H.H., Kartha, K.K. and Gusta, L.V. ( 1985. ). Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tissue Org. Cult. 4: 101–109.

    Google Scholar 

  • Chen, W.H., Cockburn, W. and Street, H.E. (1979). Preliminary experiments on freeze-preservation of sugarcane cells. Taiwania 24: 70–74.

    Google Scholar 

  • Chin, H.F., Krishnapillay, B. and Alang, Z.C. (1988). Cryopreservation of Veitchia and Howea palm embryos: Non-development of haustorium. Cryo-Letters 9: 183–186.

    Google Scholar 

  • Chin, H.F., Krishnapillay. B. and Hor, Y.L. (1989). A note on the cryopreservation of embryos from young embryos of coconuts (Cocos nucifera var. mawa). Pertanika 12: 183–186.

    Google Scholar 

  • Dereuddre, J. and Kartha, K.K. (1984). Cryopreservation of apple cell suspension cultures. In: Abstracts: First Plant Genetic Engineering Workshop, Canadian IAPTC, Saskatoon, p. 46.

    Google Scholar 

  • Dereuddre, J., Fabre, J, and Bassaglia, C. (1988). Resistance to freezing in liquid nitrogen of carnation (Dianthus caryophyllus L. var. eolo) apical and axillary shoot tips excised from different aged in vitro.plantlets. Plant Cell Rep. 7: 170–173.

    Article  Google Scholar 

  • Dereuddre, J., Scottez, C., Arnaud, Y. and Duron, M. (1990a). Effets d’un endurcissement au froid des vitroplants de poirier (Pyrus communis L. cv. Beurré Hardy) sur la résistance à une congélation dans l’azote liquide. C.R. Acad. Sci. Paris 310, Sér. 111: 265–272.

    Google Scholar 

  • Dereuddre, J., Scottez, C., Arnaud, Y. and Duron, M. (1990b). Résistance d’apex caulinaire de vitroplants de poirier (Pyrus communis L. cv. Beurré Hardy), enrobés dans l’alginate, a une déshydratation puis à une congélation dans l’azote liquide: effet d’un endurcissement préalable au froid. C.R.Acad. Sci. Paris 310, Sér. I1I: 317–323.

    Google Scholar 

  • Dereuddre, J., Blandin, S. and Hassen, N. (1991a). Resistance of alginate-coated somatic embryos of carrot (Dacus carota L.) to desiccation and freezing in liquid nitrogen, 1: Effects of preculture. Cryo-Letters 12: 125–134.

    Google Scholar 

  • Dereuddre, J., Hassen, N., Blandin S. and Kaminski, M. (1991b). Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen, 2: Thermal analysis. Cryo-Letters 12: 135–148.

    Google Scholar 

  • Diettrich, B., Popov, A.S., Pfeiffer, B., Neumann, D., Butenko, R. and Luckner, M. (1982). Cryopreservation of Digitalis lanata cell cultures. Planta Medica 46: 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Diettrich, B., Haack, U., Popov, A.S., Butenko, R.G. and Luckner, M. (1985). Long-term storage in liquid nitrogen of an embryogenic cell strain of Digitalis lanata. Biochemie und Physiologie der Pflanzenl. 180: 33–48.

    CAS  Google Scholar 

  • Dougall, D.K. and Wetherall, D.F. (1974). Storage of wild carrot cultures in the frozen state. Cryobiology 11: 410–415.

    Article  PubMed  CAS  Google Scholar 

  • Dougall, D.K. and Whitten, G.H. (1980). The ability of wild carrot cell cultures to retain their capacity for anthocyanin synthesis after storage at -140 °C. Planta Med. (1980 Suppl.), pp. 129–135.

    Google Scholar 

  • Engelmann, F. and Dereuddre, J. (1988). Cryoreservation of oil palm somatic embryos: Importance of the freezing process. Cryo-Letters 7: 220–235.

    Google Scholar 

  • Engelmann, F. and Duval, Y. (1986). Cryoconservation des embryons somatiques de palmier à huile (Elaeis guineensis Jacq.): Résultats et perspectives d’application. Oléagineux 41: 169173.

    Google Scholar 

  • Engelmann, F., Duval, Y. and Dereuddre, J. (1985). Survie et prolifération d’embryons somatiques de palmier à huile (Elaeis guineensis Jacq.) après congélation dans l’azote liquide. C. R. Acad. Sci. Paris 301, Ser. III: 111–116.

    Google Scholar 

  • Fabre, J. and Dereuddre, J. (1990). Encapsulation dehydration: a new approach to cryopreservation of Solanum shoot-tips. Cryo-Letters 11: 413–426.

    Google Scholar 

  • Finkle, B.J. and Ulrich, J.M. (1979). Effect of cryoprotectants in combination on the survival of frozen sugarcane cells. Plant Physiol. 63: 598–604.

    Article  PubMed  CAS  Google Scholar 

  • Finkle, B.J. and Ulrich, J.M. (1982). Cryoprotectant removal as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19: 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Finkle, B.J., Ulrich, J.M., Rains, D.W., Tisserat, B.B. and Schaeffer, G.W. (1979). Survival of alfalfa, rice, and date palm callus after liquid nitrogen freezing. Cryobiology 16: 583.

    Article  Google Scholar 

  • Finkle, B.J., Ulrich, J.M. and Tisserat, B. (1982). Responses of several lines of rice and date palm callus to freezing at -196 °C. In: Plant Cold Hardiness and Freezing Stress. P.H. Li and A. Sakai (eds.), Academic Press, New York, pp. 643–660.

    Google Scholar 

  • Finkle, B.J., Ulrich, J.M., Schaeffer, G.W. and Sharpe, F. (1983). Cryopreservation of rice cells. In: Cell and Tissue Culture Techniques for Cereal Crop Improvement. Academia Sinica/International Rice Research Institute, Science Press, Beijing, pp. 343–369.

    Google Scholar 

  • Finkle, B.J., Zavala, M.E. and Ulrich, J.M. (1985). Cryoprotective compounds in the viable freezing of plant tissues. In: Cryopreservation of Plant Cells and Organs. K.K. Kartha (ed.), CRC Press, Boca Raton, Florida, pp. 75–113.

    Google Scholar 

  • Friesen, L.J., Kartha, K.K., Leung, N.L., Englund, P., Giles, K.L., Park, J. and Songstad, D.D. (1991). Cryopreservation of Papaver somniferum cell suspension cultures. Planta Med. 57: 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Galerne, M. and Dereuddre, J. (1987). Survie de cals embryogènes d’épicéa après congélation a -196°C. Extrait des Annales AFOCEL 1983, pp. 1–33.

    Google Scholar 

  • Gnanapragasam, S. and Vasil, I.K. (1990). Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Plant Cell Rep. 9: 419–423.

    Article  CAS  Google Scholar 

  • Goldner, E., Krell, H.W. and Seitz, U. (1990). Cryopreservation of Atriplex cell cultures. In: Abstracts. 7th Intl. Cong. Plant Tissue and Cell Culture, Amsterdam, p. 375.

    Google Scholar 

  • Grout, B.W.W. (1979). Low temperature storage of imbibed tomato seeds: A model for recalcitrant seed storage. Cryo-Letters 15: 71–76.

    Google Scholar 

  • Grout, B.W.W. and Henshaw, G.G. (1978). Freeze-preservatiion of potato shoot-tip cultures. Ann. Bot. ( London ) 42: 1227–1229.

    Google Scholar 

  • Grout, B.W.W. and Henshaw, G.G. (1980). Structural observations on the growth of potato shoot-tip cultures after thawing from liquid nitrogen. Ann. Bot. ( London ) 46: 243–248.

    Google Scholar 

  • Grout, B.W.W., Westcott, R.J. and Henshaw, G.G. (1978). Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology 15: 478–483.

    Article  PubMed  CAS  Google Scholar 

  • Grout, B.W.W., Shelton, K. and Pritchard, H.W. (1983). Orthodox behaviour of oilpalm seed and cryopreservation of the excised embryo for genetic conservation. Ann. Bot. ( London ) 52: 81–384.

    Google Scholar 

  • Gupta, P.K., Durzan, D. J. and Finkle, B. J. (1987). Somatic polyembryogenesis in embryonic cell masses of Picea abies (Norway sruce) and Pinus taeda (Loblolly pine) after thawing from liquid nitrogen. Can. J. For. Res. 17: 1130–1134.

    Google Scholar 

  • Guy, C.L. and Haskell, D. (1987). Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol. 84: 872–878.

    Article  PubMed  CAS  Google Scholar 

  • Haffner, V. (1985). Mise au point d’un protocole adapte aux celluies de Myrtillocactus geometri-zans (Mart.) Cons. (T.). Memoire de DEA, Univ. Aix-Marseille III, 32 pp.

    Google Scholar 

  • Hahne, G.J and Lorz, H. (1987). Cryopreservation of embryogenic callus cultures from barley (Hordeum vulgare). Plant Breeding 99: 330–332.

    Article  Google Scholar 

  • Harada, T., Inaba, A., Yakuwa, Y. and Tamura, T. (1985). Freeze-preservation of apices isolated from small heads of brussels sprouts. Hort Sc. 20: 678–680.

    Google Scholar 

  • Harding, K. (1990). Molecular stability of cryopreserved shoot tips of Solanum tuberosum. In: Abstracts. 7th Intl. Congr. of Plant Tissue and Cell Culture, Amsterdam, p. 376.

    Google Scholar 

  • Harding, K., Benson, E.E. and Smith, H. (1991). The effects of in vitro culture period on the recovery of cryopreserved shoot-tips of Solanum tuberosum. Cryo-Letters 12: 17–22.

    Google Scholar 

  • Haskins, R.H. and Kartha, K.K. (1980). Freeze preservation of pea meristems: Cell survival. Can. J. Bot. 58: 833–840.

    Google Scholar 

  • Hauptman, R.H. and Widholm, J.M. (1982). Cryostorage of cloned amino acid analog-resistant carrot and tobacco suspension cultures. Plant Physiol. 70: 30–34.

    Article  Google Scholar 

  • Heber, U.W. and Santarius, K.A. (1964). Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardiness problems. Plant Physiol. 39: 712–719.

    Article  PubMed  CAS  Google Scholar 

  • Heber, U.W., Tyankova, L. and Santarius, K.A. (1971). Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim. Biophys. Acta. 241: 587–592.

    Google Scholar 

  • Hellergren, J. and Li. (1981). Survival of Solanum tuberosum suspension cultures to -14 °C: the mode of action of proline. Physiol. Plant. 52: 449–453.

    Google Scholar 

  • International Board for Plant Genetic Resources (IBPGR)(1985). Annual Report 1984, IBPGR, Rome.

    Google Scholar 

  • Irving, R.M. (1969). Influence of growth retardants on the development and loss of hardiness of Acer regundo. J. Am. Soc. Hort. Sci. 94: 419–422.

    Google Scholar 

  • Johnson-Flanagan, A.M. and Singh, J. (19873. Alteration in gene expression during the induc- tion of freezing tolerance in Brassica napus suspension cultures. Plant Physiol. 85: 699–705.

    Google Scholar 

  • Jekkel, Z.S., Heszky, L.E. and Ali, A.H. (1990). Transfer temperature dependent cryoprotectant and holding time effect in the survival response of cryopreserved cells (Puccinellia distans L. Parl). In: Abstracts, 7th Intl. Congr. of Plant Tissue and Cell Culture, Amsterdam, p. 76.

    Google Scholar 

  • Kacperska-Palacz, A. (1.978). Mechanism of cold acclimation in herbaceous plants. In: Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop Implications. P.H. Li and A. Sakai (eds.), Academic Press, New York, pp. 139–153.

    Google Scholar 

  • Kadzimin, S.B. (1988). Germplasm preservation of orchid through tissue culture. In: The Application of Tissue *Culturé Techniques in Economically Important Tree Species. R.C. Umaly, I. Umboh, S. Halos and M.N. Normah (eds.), SAMEO-Biotrop, Bogor, Indonesia, Biotrop Special Publ. 35: 167–179.

    Google Scholar 

  • Kartha, K.K. (1982). Cryopreservation of germplasm using meristem and tissue Culture. In: Application of Plant Cell and Tissue Culture to Agriculture and Industry. D.T. Tomes, B.E. Ellis, P.M. Harney, K.J. Kashaj and R.L. Peterson, (eds.), Univ. of Guelph, Guelph, Ontario, Canada, pp. 139–161.

    Google Scholar 

  • Kartha, K.K. (1985). In: Cryopreservation of Plant Cells and Organs. K.K. Kartha (ed.), CRC Press, Boca Raton, Florida, pp. 276.

    Google Scholar 

  • Kartha, K.K. (1987). Cryopreservation of secondary metabolite-producing plant cell cultures. In: Cell Culture and Somatic Cell Genetics of Plants, Cell Culture in Phytochemistry. F. Constbel and I.K. Vasil (eds.), Vol. 4. Academic Press, New York, pp. 217–227.

    Google Scholar 

  • Kartha, K.K. and Gamborg, O.L. (1978). Meristem culture techniques in the production of disease-free plants and freeze-preservation of germplasm of tropical tuber crops and grain legumes. In: Diseases of Tropical Food Crops. H.H. Maraite and J.A. Meyer (eds.), Université Catholique, Louvain-la-Neuve, Belgium, pp. 267–283.

    Google Scholar 

  • Kartha, K.K., Leung, N.L. and Gamborg, O.L. (1979). Freeze-preservation of pea meristems in liquid nitrogen and subsequent plant regeneration. Plant Sci. Lett. 15: 7–15.

    Google Scholar 

  • Kartha, K.K., Leung, N.L. and Pahl, K. (1980). Cryopreservation of strawberry meristems and mass propagation of plantlets. J. Am. Soc. Hort. Sci. 105: 481–484.

    Google Scholar 

  • Kartha, K.K., Leung, N.L. and Mroginski, L.A. (1982a). In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot escuenta Crantz). Z. Pflanzenphysiol. 107:133–140.

    Google Scholar 

  • Kartha, K.K., Leung, N.L., Gaudet-LaPrairie, P. and Consabel, F. (1982b). Cryopreservation of periwinkle Catharanthus roseus cells cultured in vitro. Plant Cell Rep. 1: 35–138.

    Article  Google Scholar 

  • Kartha, K.K., Fowke, L.C., Leung, N.L., Caswell, K.L. and Hakman, I. (1988). Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J. Plant Physiol. 132: 529–539.

    Article  CAS  Google Scholar 

  • Katano, M. (1986). Seasonal changes of freezing tolerance of apple shoot tips. Proc. Fac. Agric. Kyushu Tokai Univ. 5: 1–5.

    Google Scholar 

  • Katano, M., Ishihara, A. and Sakai, A. (1983). Survival of dormant apple shoot tips after immersion in liquid nitrogen. Hort. Sc. 18: 707–708.

    Google Scholar 

  • Kendall, E.J., Qureshi, J.A., Kartha, K.K., Leung, N.L., Chevrier, N., Caswell, K. and Chen, T.H.H. (1990) Regeneration of freezing-tolerant spring wheat (Triticum aestivum L.) plants from cryoselected callus. Plant Physiol. 94: 1756–1762.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S., Sakai, A. and Oiyama, I. (1990). Cryopreservation in liquid nitrogen of cultured navel orange (Citrus sinensis Osb.) necellar cells and subsequent plant regeneration. Plant Cell Tissue Org. Cult. 23: 15–20.

    Google Scholar 

  • Kuo, C.C. and Lineberger, R.D. (1985). Survival of in vitro cultured tissue of ‘Jonathan’ apples exposed to -196 °C. Hort. Sc, 20: 764–767.

    Google Scholar 

  • Kuriyama, A., Watanabe, K., Ueno, S. and Mitsuda, H. (1989). Inhibitory effect of ammonium ion on recovery of cryopreserved rice cells. Plant Sci. 64: 231–235.

    Article  CAS  Google Scholar 

  • Latta, R. (1971). Preservation of suspension cultures of plant cells by freezing. Can. J. Bot. 49: 1253–1254.

    Google Scholar 

  • Langis, R. and Steponkus, P.L. (1990a). The toxicity of vitrification solutions by their osmotic potential. Cryobiology 27: 654.

    Google Scholar 

  • Langis, R. and Steponkus, P.L. (1990b). Cryopreservation of rye protoplasts by vitrification. Plant Physiol. 92: 666–671.

    Article  PubMed  CAS  Google Scholar 

  • Langis, R., Schnabel, B., Earle, E.D. and Steponkus, P.L. (1989). Cryopreservation of Brassica campestris suspensions by vitrification. Cryo-Letters 10: 421–428.

    Google Scholar 

  • Langis, R., Schnabel, B., Earle, E.D. and Steponkus, P.L. (1990). Cryopreservation of carnation shoot tips by vitrification. Cryobiology 27: 657.

    Google Scholar 

  • Levitt, J. (1980). Responses of Plants to Environmental Stress, Vol. 1. Chilling, Freezing and High Temperature Stress. Academic Press, New York.

    Google Scholar 

  • Lineberger, D.R. and Steponkus, P.L. (1980). Cryoprotection by glucose, sucrose, and raffinose to chloroplast thylakoids. Plant Physiol. 65: 298–304.

    Article  PubMed  CAS  Google Scholar 

  • Ling, C.J., De, L.S. and Long, H.S. (1987). Sugarcane callus cryopreservation. In: Plant Biology, Vol. 5. Plant Cold Hardiness. P.H. Li (ed.), Alan R. Liss Inc., New York, pp. 323337.

    Google Scholar 

  • Lovelock, J.E. (1953). The protective action of glycerol against hemolysis of erythrocytes by freezing and thawing. Biochim. Biophys. Acta 11: 28–36.

    Google Scholar 

  • Lovelock, J.E. and Bishop, M.W.H. (1959). Prevention of freezing damage to living cells by dimethylsulfoxide. Nature 183: 1394–1395.

    Article  PubMed  CAS  Google Scholar 

  • Luyet, B.J. (1937). The vitrification of organic colloids and of protoplasms. Biodynamica 1: 114.

    Google Scholar 

  • Maddox, A.D., Gonsalves, F.G. and Shields, R. (1982/83). Successful cryopreservation of suspension cultures of three Nicotiana species at the temperature of liquid nitrogen. Plant Sci. Lett. 28: 157–162.

    Google Scholar 

  • Mannonen, L., Toivonen, L. and Kauppinen, V. (1990). The effect of long term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell cultures. Plant Cell Rep. 9: 173–177.

    Article  CAS  Google Scholar 

  • Manzhulin, A.V., Butenko, R.G.J and Popov, A.S. (1983). Effect of pretreatments of potato apices on surviving after deep freezing. Soviet Plant Physiol. 30: 1188–1194 (in Russian with English summary).

    Google Scholar 

  • Marin, M.L. and Duran-Vila, N. (1988). Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis L. Osb.). Plant Cell Tissue Org. Cult. 14: 51–57.

    Google Scholar 

  • Marin, M.L., Mafia, G., Roca, W.M. and Withers, L.A. (1990a). Conservation of cassava (Manihot esculenta Crantz): The role of cryopreservation. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 371.

    Google Scholar 

  • Marin, M.L., Mafia, G., Roca, W.M. and Withers, L.A. (1990b). Cryopreservation of cassava zygotic embryos and whole seeds in liquid nitrogen. Cryo-Letters 11: 257–264.

    Google Scholar 

  • Mazur, P. (1969). Freezing injury in plants. Annu. Rev. Plant Physiol. 20: 419–448.

    Google Scholar 

  • Mazur, R.A. and Hartmann, J.X. (1978). Freezing of plant protoplasts. In: Plant Cell and Tissue Culture, Principles and Applications. W.R. Sharp, P.O.’ Larson, E.F. Paddox and V. Raghavan (eds.), Ohio State Univ. Press, Clumbus, Ohio, p. 876.

    Google Scholar 

  • Mazur, R.A. and Miller, R.H. (1976). Permeability of the human erythroyte to 1 and 2 M solutions at 0 or 20 °C. Cryobiology 13: 507.

    Article  PubMed  CAS  Google Scholar 

  • McAdams, S., Ratnasabapathi, D. and Smith, R.A. (1991). Influence of days of culture on cryoprotectant-supplemented medium and of terminal freezing temperature on the survival of cryopreserved pea shoot tips. Cryobiology 28: 288–293.

    Article  Google Scholar 

  • Meijer, E.G.M., Van Iren, F., Schrinjnemakers, E., Van Zijderveld, M. and Schilperoort, R.A. (1990). Regeneration of rice (Oryza sativa) from cryopreserved cell suspension cultures. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 74.

    Google Scholar 

  • Meryman, H.T., Williams, R.J. and Douglas, M.S.J. (1977). Freezing injury from ‘solution effects’ and its prevention by natural or artificial cryoprotectants. Cryobiolgy 14: 287–302.

    Article  CAS  Google Scholar 

  • Mohapatra, S.S., Poole, R.J. and Dhindsa, R.S. (1987). Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant. 84: 1172–1176.

    CAS  Google Scholar 

  • Mora, A., Abdelnour, A. and Villalobos, V. (1991). Cryopreservation of Musa zygotic embryos. In: Proc. 4th IPBNet Conf., Biotechnology for Tropical Crop Improvement in Latin America, San Jose, Costa Rica, January 14–18, 1991. 2.

    Google Scholar 

  • Nag, K.K. and Street, H.E. (1973). Carrot embryogenesis from frozen cultured cells. Nature 245: 270–272.

    Article  Google Scholar 

  • Nag, K.K. and Street, H.E. (1975a). Freeze-preservation of cultured plant cells, I: The pretreatment phase. Physiol. Plant. 340: 254–260.

    Google Scholar 

  • Nag, K.K. and Street, H.E. (1975b). Freeze-preservation of cultured plant cells, II: The freezing and thawing phases. Physiol. Plant. 34: 261–165.

    Google Scholar 

  • Nash, T. (1966). Chemical constitution and physical properties of compounds able to protect living cells against damage due to freezing and thawing. In: Cryobiology. H.Y. Meryman (ed.), Academic Press, New York, pp. 197–211.

    Google Scholar 

  • Normah, M.N., Chin, H.F. and Hor, Y.L. (1986). Desiccation and cryopreservation of embryonic axes of Hevea brasiliensis Muell. Arg. Pertanika 9: 299–303.

    Google Scholar 

  • Orr, W., Keller, W.A. and Singh, J. (1986). Induction of freezing tolerance in an embryogenic cell suspension culture of Brassica napus by abscisic acid at room temperature. J. Plant Physiol. 126: 23–32.

    Article  CAS  Google Scholar 

  • Panis, B.J., Withers, L.A. and De Langhe, E.A.L. (1990). Cryopreservation of Musa suspension and regeneration of plants. Cryo-Letters 11: 337–350.

    Google Scholar 

  • Pence, V.C. (1990). In vitro collection, regeneration, and cryopreservation of Brunfelsia densi-folia. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 377.

    Google Scholar 

  • Pence, V.C. (1991). Cryopreservation of immature embryos of Theobroma cacao. Plant Cell 10: 144–147.

    Google Scholar 

  • Pence, V.C. and Dresser, B.L. (1988). Embryo cryostorage as a technique for germplasm preservation of several large-seeded tree species. In: Abstracts, Beltsville Symp. in Agric. Res. XIII. Biotic Diversity and Germplasm Preservation - Global Imperatives. May 9–11, p. 24.

    Google Scholar 

  • Perras, M. and Sarhan, F. (1984). Energy state of spring and winter wheat during cold hardening. Soluble sugars and adenine nucleotides. Physiol. Plant. 60: 129–132.

    Google Scholar 

  • Perras, M. and Sarhan, F. (1989). Synthesis of freezing tolerance proteins in leaves, crown, and roots during cold acclimation of wheat. Plant Physiol. 89: 577–585.

    Article  PubMed  CAS  Google Scholar 

  • Polge, C., Smith, A.U. and Parkes, A.S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164: 666.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, H.W., Grout, B.W.W. and Short, K.C. (1986a). Osmotic stress as a pregrowth procedure for cryopreservation, 2: Water relations and metabolic state of sycamore and soybean cell suspensions. Ann. Bot. 57: 371–378.

    Google Scholar 

  • Pritchard, H.W., Grout, B.W.W. and Short, K.C. (1986b). Osmotic stress as a pregrowth procedure for cryopreservation, 3: Cryobiology of sycamore and soybean cell suspensions. Ann. Biot. 57: 379–387.

    Google Scholar 

  • Quatrano, R.S. (1968). Freeze-preservation of cultured flax cells utilizing DMSO. Plant 43: 20572061.

    Google Scholar 

  • Rall, W.F. and Fahy, G.M. (1985). Ice-free cryopreservation of mouse embryos at -196 °C by vitrification. Nature 313: 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Reed, B.M. (1988). Cold acclimation as a method to improve survival of cryopreserved Rubus meristems. Cryo-Letters 9: 166–171.

    Google Scholar 

  • Reuf, I. (1987). Untersuchungen zur kryokonservierung pflanzlicher Zellkulturen am Beispiel von Coleus blumei and Berbis wilsoniae. Dissertation zur Erlangung des Grades eines Doktors des Naturwissenschaften. Univ. Eberhard Karl. Tubingen, pp. 130.

    Google Scholar 

  • Reuff, I., Sietz, U., Ulbrich, B. and Reinhard, E. (1988). Cryopreservation of Coleus blumei suspension and callus cultures. J. Plant Physiol. 133: 414–418.

    Article  Google Scholar 

  • Robertson, A.J., Gusta, L.V., Reaney, M.J.T. and Ishikawa, M. (1987). Protein synthesis in bromegrass (Bromus inermis Leyss) cultured cells during the induction of frost tolerance by abscisic acid or low temperature. Plant Physiol. 84: 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, A. (1956). Survival of plant tissues at super-low temperatures, I. Low Temp. Sci. Ser. B 14: 17–23.

    Google Scholar 

  • Sakai, A. (1958). Survival of plant tissue at super-low temperature, II. Low Temp. Sci. Ser. B 16: 41–53.

    Google Scholar 

  • Sakai, A. and Nishiyama, Y. (1978). Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. Hort. Sc. 13: 225–227.

    Google Scholar 

  • Sakai, A. and Sugawara, Y. (1973). Survival of poplar callus at super-low temperatures after cold acclimation. Plant Cell Physiol. 14: 1201–1204.

    Google Scholar 

  • Sakai, A., Yamakawa, M., Sakato, D., Harada, T. and Yakuwa, T. (1978). Development of a whole plant from an excised strawberry runner apex frozen to -196 °C. Low Temp. Sci. Ser. B. 36: 31–38.

    Google Scholar 

  • Sakai, A., Kobayashi, S. and Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 9: 3033.

    Article  Google Scholar 

  • Sakai, A., Kobayashi, S. and Oiyama, I. (1991a). Survival by vitrification of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to -196 °C. J. Plant Physiol. 137: 465–470.

    Article  Google Scholar 

  • Sakai, A., Kobayashi, S. and Oiyama, I. (1991b). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb.) by a simple freezing method. Plant Sci. 74: 243–248.

    Article  Google Scholar 

  • Sala, F., Cella, R. and Rollo, F. (1979). Freeze-preservation of rice cells. Physiol. Plant. 45: 170–176.

    Google Scholar 

  • Santarius, K.A. (1971). The effects of freezing on thylakoid membranes in the presence of organic acids. Plant Physiol. 48: 156–162.

    Article  PubMed  CAS  Google Scholar 

  • Santarius, K.A. (1973). The protective effects of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation, and heat resistance. Planta 113: 105–114.

    Article  CAS  Google Scholar 

  • Schrijnemakers, E.W.W., McLellan, M.R. and Van Iren. (1990). Cryopreservation of cell suspensions: A cryomicroscopic study of resistant and susceptible cell lines. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 378.

    Google Scholar 

  • Seibert, M. (1976). Shoot initiation from carnation shoot apices frozen to -196°C. Science 191: 1178–1179.

    Article  PubMed  CAS  Google Scholar 

  • Seibert, M. (1977). Process for storing and recovering plant tissue. US Patent No. 4, 052, 817.

    Google Scholar 

  • Seibert, M. and Wetherbee, P.M. (1977). Increased survival and differentiation of frozen herbaceous plant organ cultures through cold treatment. Plant Physiol. 59: 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Seitz, U. and Reinhard, E. (1987). Growth and ginsenoside patterns of cryopreserved Panax ginseng cell cultures. J. Plant Physiol. 131: 215–223.

    Article  CAS  Google Scholar 

  • Seitz, U., Alfermann, A.W. and Reinhard, E. (1983). Stability of biotransformation capacity in Digitalis lanata cell cultures. Plant Cell Rep. 2: 273–276.

    Article  CAS  Google Scholar 

  • Shillito, R.D., Carswell, G.K., Johnson, C.M., DiMaio, J.J. and Harms, C.T. (1989). Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.

    Article  Google Scholar 

  • Standke, K.H.C. (1978). Tiefgefrierung nodaler segmente von Kartoffeln mittels flussigen Stick-stoff. Landbaufforschung Volkenrode 28: 77–78.

    Google Scholar 

  • Steponkus, P.L. and Lanphear, F.O. (1967). Refinement of the triphenyltetrazolium chloride method of determining cold injury. Plant Physiol. 4: 1432–1436.

    Google Scholar 

  • Sudarmonowati, E. and Henshaw, G.G. (1990). Cryopreservation of cassava somatic embryos. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 378.

    Google Scholar 

  • Sugawara, Y. and Sakai, A. (1974). Survival of suspension cultured sycamore cells cooled to the temperature of liquid nitrogen. Plant Physiol. 54: 772–774.

    Article  Google Scholar 

  • Sun, C.N. (1958). The survival of excised pea seedlings after drying and freezing in liquid nitrogen. Bot. Gaz. ( Chicago ) 19: 234–236.

    Google Scholar 

  • Takeuchi, M., Matsushima, H. and Sugawara, Y. (1980). Long-term freeze-preservation of protoplasts of carrot and Marchantia. Cryo-Letters 1: 519–524.

    CAS  Google Scholar 

  • Takeuchi, M., Matsushima, H. and Sugawara, Y. (1982). Totipotency and viability of protoplasts after long-term freeze-preservation. In: Plant Tissue Culture, 1982. A. Fujiwara (ed.), Maruzen, Tokyo, pp. 797–798.

    Google Scholar 

  • Tisserat, B., Ulrich, J.M. and Finkle, B.J. (1981). Cryogenic preservation and regeneration of date palm tissue. Hort. Sc. 16: 47–48.

    Google Scholar 

  • Thorn, E.C. (1990). Cryopreservation of red clover (Trifolium pratense) meristems. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 78.

    Google Scholar 

  • Toivonen, P.M.A. and Kartha, K.K. (1989). Cryopreservation of cotyledons of nongerminated white spruce [Picea glauca ( Moench) Voss] embryos and subsequent plant regeneration. Plant Cell Rep. 134: 766–768.

    Google Scholar 

  • Towill, L.E. (1981a). Solanum etuberosum: A model for studying the cryobiology of shoot-tips in the tuber bearing Solanum species. Plant Sci. Lett. 20: 315–124.

    Google Scholar 

  • Towill, L.E. (1981b). Survival at low temperatures of shoot-tips from cultivars of Solanum tuberosum group Tuberosum. Cryo-Letters 2: 373–382.

    Google Scholar 

  • Towill, L.E. (1983). Improved survival after cryogenic exposure of shoot-tips derived from in vitro plantlet cultures of potato. Cryobiology 20: 567–573.

    Article  PubMed  CAS  Google Scholar 

  • Towill, L.E. (1990a). Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep. 9: 178–180.

    Article  Google Scholar 

  • Towill, L.E. (1990b). Cryopreservation of shoot tips by vitrification. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 79.

    Google Scholar 

  • Towill, L.E. and Mazur, P. (1976). Osmotic shrinkage as a factor in freezing injury in plant tissue cultures. Plant Physiol. 57: 290.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, N.J. and Stushnoff, C. (1988a). The effects of prefreezing and controlled dehydration on cryopreservation of dormant vegetative apple buds. Can J. Plant Sci. 68: 1163–1167.

    Google Scholar 

  • Tyler, N.J. and Stushnoff, C. (1988b). Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can. J. Plant Sci. 68: 1169–1176.

    Google Scholar 

  • Uemura, M. and Sakai, A. (1980). Survivai of carnation (Dianthus caryophyllus L.) shoot apices frozen to the temperature of liquid nitrogen. Plant Cell Physiol. 21: 85–94.

    CAS  Google Scholar 

  • Ulrich, J.M., Finkle, B.J., Moore, P.H. and Ginoza. (1979). Effect of a mixture of cryoprotectants in attaining liquid nitrogen survival of callus cultures of a tropical plant. Cryobiology 16: 550–556.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, J.M., Finkle, B.J., Mackey, B.E., Schaeffer, G.W. and Sharpe, F., Jr. (1984a). Responses of six rice callus cultures to deep-frozen temperatures. Crop Sci. 24: 82–85.

    Article  Google Scholar 

  • Ulrich, J.M., Mickler, R.A., Finkle, B.J. and Karnosky, D.F. (1984b). Survival and regeneration of American elm callus cultures after being frozen in liquid nitrogen. Can. J. For. Res. 14: 750–753.

    Google Scholar 

  • Uragami, A., Sakai, A., Nagai, M. and Takahashi, T. (1989). Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 8: 418421.

    Google Scholar 

  • Volger, H.G. and Heber, U.W. (1975). Cryoprotective leaf proteins. Biochim. Biophys. Acta 412: 335–349.

    Google Scholar 

  • Von Arnold, D. and Eriksson, T. (1981). In vitro studies of adventitious shoot formation in Pinus contorta. Can. J. Bot. 59: 870–874.

    Google Scholar 

  • Watanabe, K., Mitsuda, H. and Yamada, Y. (1983). Retention of metabolic and differentiation potentials of green Lavandula vera callus after freeze preservation. Plant Cell Physiol. 24: 119122.

    Google Scholar 

  • Watanabe, K., Kuriyama, A., Ueno, S. and Mitsuda, H. (1990). Cryoprotectability of cultured Lavandula vera cells and retention of metabolic and differentiation potentials of the cells after storage in liquid nitrogen. In: Abstracts, 7th Intl. Congr. Plant Tissue and Cell Culture, Amsterdam, p. 379.

    Google Scholar 

  • Weber, G., Roth, E.J. and Schweiger, H.-G. (1983). Storage of cell suspensions and protoplasts of Glycine max (L.) Merr., Braasica napus (L.), Datura innoxia (Mill) and Daucus carota (L.) by freezing. Z. Planzenphysiol. 10: 23–29.

    Google Scholar 

  • Wehner, T.C. (1988). Genetic considerations in germplasm collection and maintenance: A summary. Hort. Sc. 23: 95–97.

    Google Scholar 

  • Widholm, J.M. (1972). The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47: 189–194.

    PubMed  CAS  Google Scholar 

  • Williams, R.J. and Meryman, H.T. (1970). Freezing injury and resistance to spinach chloroplast grana. Plant Physiol. 45: 752–755.

    Article  PubMed  CAS  Google Scholar 

  • Withers, L.A. (1978). Freeze-preservation of synchronously dividing cells of Acer pseudoplatanus. Cryobiology 15: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Withers, L.A. (1979). Freeze-preservation of somatic embryos and clonal plantlets of carrot (Daucus carota L.). Plant Physiol. 63: 460–467.

    Article  PubMed  CAS  Google Scholar 

  • Withers, L.A. (1980). Preservation of germplasm. Int. Rev. Cytol. Suppl. 11B: 101–136.

    Google Scholar 

  • Withers, L.A. (1982). The develoment of cryopreservation techniques for plant cell, tissue and organ cultures. In: Plant Tissue Culture 1982. A. Fujiwara (ed.), Maruzen, Tokyo, pp. 793–794.

    Google Scholar 

  • Withers, L.A. (1985). Cryopreservation of cultured plant cells and protoplasts. In: Cryopreservation of Plant Cells and Organs. K.K. Kartha, (ed.), CRC Press, Boca Raton, Florida, pp. 243–267.

    Google Scholar 

  • Withers, L.A. and King, P.J. (1979). Proline: A novel cryoprotectant for the freeze-preservation of cultured cells of Zea mays L. Plant Physiol. 64: 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Withers, L.A. and King, P.J. (1980). A simple freezing unit and cryopreservation method for plant cell suspensions. Cryo-Letters 1: 213–220.

    Google Scholar 

  • Withers, L.A. and Street, H.E. (1977). Freeze-preservation of cultured plant cells, III: The pregrowth phase. Physiol Plant. 39: 171–178.

    Google Scholar 

  • Wu, M.T. and Wallner, S.J. (1985). Effect of temperature on freezing and heat stress tolerance of cultured plant cells. Cryobiology 22: 191–195.

    Article  Google Scholar 

  • Yamada, T., Sakai, A., Matsumura, T. and Higuchi, S. (1991). Cryopreservation of apical meristems of white clover (Trifolium repens L.). Plant Sci. 73: 111–116.

    Article  Google Scholar 

  • Zandvoort, E.A. (1987). In vitro germplasm conservation of tropical aroids. Acta Bot. Neerl. 36: 150.

    Google Scholar 

  • Zeevaart, J.A.D. and Crelman, R.A. (1988). Metabolism and physiology of abscisic acid. Ann. Rev. Pl. Physiol. 39: 439–473.

    CAS  Google Scholar 

  • Ziebolz, B. and Forche, E. (1985). Cryopreservation of plant cells to retain special attributes. In: Advances in Agriculture and Biotechnology. A. Schaefer-Menhur, (ed.), Kluwer Academic Publishers, Dordrecht, p. 181.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kartha, K.K., Engelmann, F. (1994). Cryopreservation and Germplasm Storage. In: Vasil, I.K., Thorpe, T.A. (eds) Plant Cell and Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2681-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2681-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4327-6

  • Online ISBN: 978-94-017-2681-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics