Skip to main content

In vitro Culture of Cereals and Grasses

  • Chapter
Plant Cell and Tissue Culture

Abstract

The origins of the grass family Gramineae (Poaceae) remain obscure and debatable. However, the grasses are known to have evolved early and become prominent about 70 million years ago at the end of the Cretaceous. Since then; grasses have become a highly diversified group of plants that are distributed worldwide in virtually all climatic zones. One of the largest families of angiosperms, the Gramineae comprise nearly 785 genera, and more than 10,000 species, ranging from some of the smallest angiosperms to the giant bamboos. By virtue of including such major food crops as the cereals and sugarcane for human beings, and forage grasses for animals, it is clearly the most important family of angiosperms. The primitive forms of several cereal species were amongst the handful of plants that were first domesticated by early man. The choices made by the Neolithic man, nearly 10,000 years ago; have not only proven to be remarkably durable but have also played a major role in sustaining the development of the human civilization. The major cereal species, such as wheat, rice and maize, have long and venerable histories. Even today they form the centerpiece of world agriculture by providing more than half of all food for mankind. It is also noteworthy that grasses in general are excellent and vigorous colonizers, especially of disturbed environments. With the ever increasing human population and industrialization, and the severe resultant strains on the environment, the grasses are destined to become even more important for mankind in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, K.Z. and Sagi, F. (1993). Culture of and fertile plant regeneration from regenerable embryogenic cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep. 12: 175–179.

    Google Scholar 

  • Akagi, H., Sakamoto, M., Negishi, T. and Fujimura, T. (1989). Construction of rice hybrid plants. Molec. Gen. Genet. 215: 501–506.

    CAS  Google Scholar 

  • Akashi, R. and Adachi, T. (1992). Plant regeneration from suspension culture-derived proto-plasts of apomictic dallisgrass (Paspalum dilatatum Poir.). Plant Sci. 82: 219–225.

    CAS  Google Scholar 

  • Armstrong, C.L. and Green, C.E. (1985). Establishment and maintenance of friable em-bryogenic maize callus and the involvement of L-proline. Planta 164: 207–214.

    CAS  Google Scholar 

  • Asano, Y. and Sugiura, K. (1990). Plant regeneration from suspension culture-derived proto-plasts of Agrostis alba L. ( Redtop ). Plant Sci. 72: 267–273.

    Google Scholar 

  • Baillie, A.M.R., Rossnagel, B.G. and Kartha, K.K. (1992). •Field evaluation of barley (Hordeum vulgare L.) genotypes derived from tissue culture. Canad. J. Plant Sci. 72: 725–733.

    Google Scholar 

  • Baset, A., Cocking, E.C. and Finch, R.P. (1993). Regeneration of fertile plants from protoplasts of the wild rice species Oryza granulata. J. Plant Physiol. 141: 245–247.

    Google Scholar 

  • Baset, A., Finch, R.P. and Cocking, E.C. (1991). Plant regeneration from protoplasts of wild rice (Oryza rufipogon Griff.). Plant Cell Rep. 10: 200–203.

    Google Scholar 

  • Borlaug, N.E. and Dowswell, C.R. (1988). World revolution in agriculture. In: Book of the Year 1988. Encyclopedia Britannica, Chicago, pp. 5–14.

    Google Scholar 

  • Botti, C. and Vasil, I.K. (1983). Plant regeneration by somatic embryogenesis from parts of cultured mature embryos of Pennisetum americanum (L.) K. Schum. Z. Pflanzenphysiol. 111: 319–325.

    Google Scholar 

  • Bower, R. and Birch, R.G. (1992). Transgenic sugarcane plants via microprojectile bombardment. The Plant J. 2: 409–416.

    CAS  Google Scholar 

  • Breiman, A., Felsenburg, T. and Galun, E. (1989) Is Nor region variability in wheat invariably caused by tissue culture? Theor. Appl. Genet. 77: 809–814.

    Google Scholar 

  • Bright, S.W. and Jones, M.G.K. (eds). (1985). Cereal Tissue and Cell Culture. Nijhoff/W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Brink, R.A., Cooper, D.C. and Ausherman, L.E. (1944). A hybrid between Hordeum jubatum and Secale cereale reared from an artificially cultivated embryo. J. Hered. 35: 67–75.

    Google Scholar 

  • Carnes, M.G. and Wright, M.S. (1988). Endogenous hormone levels of immature corn kernels of A188, Missouri-17, and DeKalb XL-12. Plant Sci. 57: 195–203.

    CAS  Google Scholar 

  • Cavallini, A., Lupi, M.C., Cremonini, R. and Bennici, A. (1987). In vitro culture of Bellevalia romana (L.) Rchb. III. Cytological study of somatic embryos. Protoplasma 139: 66–70.

    Google Scholar 

  • Cavallini, A. and Natali, L. (1989). Cytological analyses of in vitro somatic embryogenesis in Brimura amethystina Salisb. (Liliaceae). Plant Sci. 62: 255–261.

    Google Scholar 

  • Chandler, S.F. and Vasil, I.K. (1984). Optimization of plant regeneration from long term embryogenic callus cultures of Pennisetum americanum Schum. (Napier grass). J. Plant Physiol. 117: 147–156.

    PubMed  CAS  Google Scholar 

  • Chen, D. and Xia, Z. (1987). Mature plant regeneration from cultured protoplasts of Polypogon fugax Nees ex Steud. Sci. Sinica B 30: 698–704.

    Google Scholar 

  • Chen, T.H.H., Kartha, K.K. and Gusta, L.V. (1985). Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tissue Org. Cult. 4: 101–109.

    Google Scholar 

  • Chen, W.H., Davey, M.R., Power, J.B. and Cocking, E.C. (1988). Sugarcane protoplasts: factors affecting division and plant regeneration. Plant Cell Rep. 7: 344–347.

    CAS  Google Scholar 

  • Chowdhury, M.K.U. and Vasil, I.K. (1993). Molecular analysis of plants regenerated from embryogenic cultures of hybrid sugarcane cultivars (Saccharum spp.). Theor. Appl. Genet. 86: 181–188.

    Google Scholar 

  • Chowdhury, M.K.U., Vasil, V. and Vasil, I.K. (1994). Molecular analysis of plants regenerated from embryogenic cultures of wheat (Triticum aestivum L.). Theor. Appl. Genet. 87: 821–828.

    Google Scholar 

  • Christou, P., Ford, T.L. and Kofron, M. (1991). Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957–962.

    Google Scholar 

  • Chu, C.C., Wang, C.C., Sun, C.S., Hsu, C., Yin, K.C. and Chu, C.Y. (1975). Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18: 659–668.

    Google Scholar 

  • Conger, B.V., Henning, G.E., Gray, D.J. and McDaniel, J.K. (1983). Direct embryogenesis from mesophyll cells of orchardgrass. Science 221: 850–851.

    PubMed  CAS  Google Scholar 

  • Creemers-Molenaar, J., van der Valk, P., Loeffen, J.P.M. and Zaal, M.A.C.M. (1989). Plant regeneration from suspension cultures and protoplasts of Lolium perenne L. Plant Sci. 63: 167–176.

    Google Scholar 

  • Cure, W.W. and Mott, R.L. (1978). A comparative anatomical study of organogenesis in cultured tissues of maize, wheat and oats. Physiol. Plant. 42: 91–96.

    Google Scholar 

  • Dale, P.J. (1980). Embryoids from cultured immature embryos of Lolium multiflorum. Z. Pflanzenphysiol. 100: 73–77.

    Google Scholar 

  • Dalton, S.J. (1988). Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb. (tall fescue) and Lolium perenne L. (perennial ryegrass). J. Plant Physiol. 132: 170–175.

    Google Scholar 

  • D’Amato, F. (1985). Cytogenetics of plant cell and tissue cultures and their regenerants. CRC Crit. Rev. Plant Sci. 3: 73–112.

    Google Scholar 

  • Datta, S.K., Datta, K., Soltanifar, N., Donn, G. and Potrykus, I. (1992). Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Molec. Biol. 20: 619–629.

    Google Scholar 

  • Datta, S.K., Peterhans, A., Datta, K. and Potrykus, I. (1990). Genetically engineered fertile Indica rice recovered from protoplasts. Bio/Technology 8: 736–740.

    CAS  Google Scholar 

  • Datta, S.K. and Potrykus, I. (1989). Artificial seeds in barley: encapsulation of microspore-derived embryos. Theor. Appl. Genet. 77: 820–824.

    Google Scholar 

  • D’Halluin, K., Bonne, E., Bossut, M., de Beuckeleer, M. and Leemans, J. (1992). Transgenic maize plants by tissue electroporation. The Plant Cell 4: 1495–1505.

    PubMed  Google Scholar 

  • Dong, J. and Xia, Z. (1990). Protoplast culture and plant regeneration of foxtail millet. Chinese Sci. Bull. 35: 1560–1564.

    Google Scholar 

  • Fransz, P.F. and Schel, J.H.N. ( 1991. An ultrastructural study on the early development of Zea mays somatic embryos. Can. J. Bot. 69: 858–865.

    Google Scholar 

  • Fretz, A., Jahne, A. and Lorz, H. (1992). Cryopreservation of embryogenic suspension cultures of barley (Hordeum vulgare L.). Bot. Acta 105: 140–145.

    Google Scholar 

  • Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T.M. (1990). Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    PubMed  CAS  Google Scholar 

  • Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J. and Shimamoto, K. (1993). Insect resistant rice generated by introduction of a modified S-endotoxin gene of Bacillus thuringiensis. Bio/Technology 11: 1151–1155.

    PubMed  CAS  Google Scholar 

  • Gamborg, O.L., Miller, R.A. and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean roots. Exp. Cell Res. 50: 151–158.

    Google Scholar 

  • Gmitter, F.G. Jr., Ling, X., Cai, C. and Grosser, J.W. (1991). Colchicine induced polyploidy in Citrus embryogenic cultures, somatic embryos and regenerated plantlets. Plant Sci. 74: 135–141.

    CAS  Google Scholar 

  • Gnanapragasam, S. and Vasil, I.K. (1990). Plant regeneration from a cryopreserved embryogenic cell suspension of a commercial sugarcane hybrid (Saccharum sp.). Plant Cell Rep. 9: 419–423.

    CAS  Google Scholar 

  • Gnanapragasam, S. and Vasil, I.K. (1992). Cryopreservation of immature embryos, em- bryogenic callus and cell suspension cultures of gramineous species. Plant Sci. 83: 205–215.

    Google Scholar 

  • Golovkin, M.V., Abraham, M., Morocz, S., Bottka, S., Feher, A. and Dudits, D. (1993). Production of transgenic maize plants by direct uptake of DNA into embryogenic protoplasts. Plant Sci. 90: 41–52.

    CAS  Google Scholar 

  • Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams Jr. W.R., Willets, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P. and Lemaux, P.G. (1990). Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Green, C.E. (1978). In vitro plant regeneration in cereals and grasses. In: Frontiers of Plant Tissue Culture 1978. T.A. Thorpe (ed.), University of Calgary, Calgary, pp. 411–418.

    Google Scholar 

  • Green, C.E., Armstrong, C.L. and Anderson, P.C. (1983). Somatic cell genetic systems in corn. In: Advances in Gene Technology: Molecular Genetics of Plants and Animals. K. Downey, R.W. Voellmy, J. Schultz and F. Ahmad (eds.), Academic Press, New York, pp. 147–157.

    Google Scholar 

  • Gupta, H.S. and Pattanayak, A. (1993). Plant regeneration from mesophyll protoplasts of rice (Oryza sativa L.). Bio/Technology 11: 90–94.

    Google Scholar 

  • Ha, S., Wu, F. and Thorne, T.K. (1992). Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep. 11: 601–604.

    CAS  Google Scholar 

  • Hahne, B., Fleck, J. and Hahne, G. (1989). Colony formation from mesophyll protoplasts of a cereal, oat. Proc. Natl. Acad. Sci. USA 86: 6157–6160.

    Google Scholar 

  • Hanna, W.W., Lu, C. and Vasil, I.K. (1984). Uniformity of plants regenerated from somatic embryos of Panicum maximum Jacq. (Guinea grass). Theor. Appl. Genet. 67: 155–159.

    Google Scholar 

  • Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y., Izawa, T., Shimamoto, K. and Toriyama, S. (1992). Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc. Natl. Acad. Sci. USA 89: 9865–9869.

    Google Scholar 

  • Hayashi, Y., Kyozuma, J. and Shimamoto, K. (1988). Hybrids of rice (Oryza sativa L.) and wild Oryza species obtained by cell fusion. Molec. Gen. Genet. 214: 6–10.

    Google Scholar 

  • Haydu, Z. and Vasil, I.K. (1981). Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum. Theor. Appl. Genet. 59: 269–273.

    Google Scholar 

  • Heinz, D.J. and Mee, G.W.P. (1969). Plant differentiation from callus tissue of Saccharum species. Crop Sci. 9: 346–348.

    Google Scholar 

  • Ho, W. and Vasil, I.K. (1983a). Somatic embryogenesis in sugarcane (Saccharum officinarum L.), I: The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118: 169–180.

    Google Scholar 

  • Ho, W. and I.K. Vasil, I.K. (1983b). Somatic embryogenesis in sugarcane (Saccharum officinarum L.), II: The growth of and plant regeneration from embryogenic cell suspension cultures. Ann. Bot. 51: 719–726.

    Google Scholar 

  • Horn, M.E., Conger, B.V. and Harms, C.T. (1988a). Plant regeneration from protoplasts of embryogenic suspension cultures of orchardgrass (Dactylis glomerata L.). Plant Cell Rep. 7: 371–374.

    Google Scholar 

  • Horn, M.E., Shillito, R.D., Conger, B.V. and Harms, C.T. (1988b). Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7: 469–472.

    CAS  Google Scholar 

  • Isabel, N., Tremblay, L., Michaud, M., Tremblay, F.M. and Bousquet, J. (1993). RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B.S.P. Theor. Appl. Genet. 86: 81–87.

    Google Scholar 

  • Jahne, A., Lazzeri, P.A. and Lorz, H. (1991). Regeneration of fertile plants from protoplasts derived from embryogenic cell suspensions of barley (Hordeum vulgare L.). Plant Cell Rep. 10: 1–6.

    Google Scholar 

  • Jones, T.J. and Rost, T.L. (1989). The developmental anatomy and ultrastructure of somatic embryos from rice (Oryza sativa L.) scutellum epithelial cells. Bot. Gaz. 150: 41–49.

    Google Scholar 

  • Karlsson, S.B. and Vasil, I.K. (1986a). Morphology and ultrastructure of embryogenic cell suspension cultures of Panicum maximum Jacq. (Guinea grass) and Pennisetum purpureum Schum. (Napier grass). Am. J. Bot. 73: 894–901.

    Google Scholar 

  • Karlsson, S.B. and Vasil, I.K. (1986b). Growth, cytology and flow cytometry of embryogenic cell suspension cultures of Panicum maximum Jacq. (Guinea grass) and Pennisetum purpureum Schum. (Napier grass). J. Plant Physiol. 123: 211–227.

    Google Scholar 

  • King, P.J., Potrykus, I. and Thomas, E. (1978). In vitro genetics of cereals: Problems and perspectives. Physiol. Veg. 16: 381–399.

    Google Scholar 

  • Kobayashi, S. (1987). Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts. Theor. Appl. Genet. 74: 10–14.

    Google Scholar 

  • Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M. and Evola, S.V. (1993). Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11: 194–200.

    CAS  Google Scholar 

  • Kranz, E. and Lorz, H. (1993). In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile plants of maize. The Plant Cell 5:739–746.

    Google Scholar 

  • Kyozuka, J., Hayashi, Y. and Shimamoto, K. (1987). High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Molec. Gen. Genet. 206: 408–413.

    Google Scholar 

  • Kyozuka, J., Taneda, K. and Shimamoto, K. (1989). Production of cytoplasmic male sterile rice (Oryza sativa L.) by cell fusion. Bio/Technology 7: 1171–1174.

    Google Scholar 

  • Larkin, P.J. and Scowcroft, W.R. (1981). Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214.

    Google Scholar 

  • LaRue, C.D. (1949). Cultures of endosperm of maize. Am. J. Bot. 36: 798.

    Google Scholar 

  • Li, L., Qu, R., de Kochko, A., Fauquet, C. and Beachy, R.N. (1993). An improved rice transformation system using the biolistic method. Plant Cell Rep. 12: 250–255.

    Google Scholar 

  • Lu, C. and Vasil, I.K. (1981a). Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq. Theor. Appl. Genet. 59: 275–280.

    Google Scholar 

  • Lu, C. and Vasil, I.K. (1981b). Somatic embryogenesis and plant regeneration from freely suspended cells and cell groups of Panicum maximum in vitro. Ann. Bot. 47: 543–548.

    Google Scholar 

  • Lu, C., Vasil, V. and Vasil, I.K. (1981). Isolation and culture of protoplasts of Panicum maximum Jacq. (Guinea grass): somatic embryogenesis and plantlet formation. Z. Pflanzenphysiol. 104: 311–318.

    Google Scholar 

  • Lu, C., Vasil, V. and Vasil, I.K. (1983). Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor. Appl. Genet. 62: 285–290.

    Google Scholar 

  • Lu, T.G. and Sun, C.S. (1992). Cryopreservation of millet (Setaria italica L.). J. Plant Physiol. 139: 295–298.

    CAS  Google Scholar 

  • Maretzki, A. (1987). Tissue culture: its prospects and problems. In: Sugarcane Improvement Through Breeding. D.J. Heinz (ed.), Elsevier, Amsterdam, pp. 343–384.

    Google Scholar 

  • Maretzki, A. and Nickell, L.G. (1973). Formation of protoplasts from sugarcane cell suspensions and the regeneration of cell cultures from protoplasts. Colloq. Int. CNRS 212: 51–53.

    Google Scholar 

  • Meijer, E.G.M., van Iren, F., Schrijnemakers, E., Hensgens, L.A.M., van Zijderveld, M. and Schilperoort, R.A. (1991). Retention of capacity to produce plants from protoplasts in cryopreserved cell lines of rice (Oryza sativa L.). Plant Cell Rep. 10: 171–174.

    Google Scholar 

  • Morocz, S., Donn, G., Nemeth, J. and Dudits, D. (1990). An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor. Appl. Genet. 80: 721–726.

    Google Scholar 

  • Morrish, F.M., Vasil, V. and. Vasil, I.K (1987). Developmental morphogenesis and genetic manipulation in tissue and cell cultures of the Gramineae. Adv. Genet. 24: 431–499.

    Google Scholar 

  • Morrish, F.M., Hanna, W.W. and Vasil, I.K. (1990). The expression and perpetuation of inherent somatic variation in regenerants from embryogenic cultures of Pennisetum glaucum (L.) R.Br. (pearl millet). Theor. Appl. Genet. 80: 409–416.

    Google Scholar 

  • Mukunthakumar, S. and Mathur, J. (1992). Artificial seed production in the male bamboo Dendrocalamus strictus L. Plant Sci. 87: 109–113.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Murry, L.E., Elliott, L.G., Capitant, S.A., West, J.A., Hanson, K.K., Scarafia, L., Johnston, S., DeLuca-Flaherty, C., Nichols, S., Cunanan, D., Dietrich, P.S., Mettler, I.J., Dewald, S., Warnick, D.A., Rhodes, C., Sinibaldi, R.M. and Brunke, K.J. (1993). Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11: 559–564.

    Google Scholar 

  • Nemet, G. and Dudits, D. (1977). Potential of protoplast, cell and tissue culture in cereal research. In: Use of Tissue Cultures in Plant Breeding. F.J. Novak (ed.), Czechoslovak Academy of Sciences, Prague, pp. 145–163.

    Google Scholar 

  • Nesticky, M., Novak, F.J., Piovarci, A. and Dolezelova, M. (1983). Genetic analysis of callus growth of maize (Zea mays L.) in vitro. Z. Pflanzenphysiol. 91: 322–328.

    Google Scholar 

  • Nishi, T., Yamada, Y. and Takahashi, E. (1968). Organ differentiation and plant restoration in rice callus. Nature 219: 508–509.

    PubMed  CAS  Google Scholar 

  • Norstog, K. (1956). Growth of rye grass endosperm in vitro. Bot. Gaz. 117: 253–259.

    Google Scholar 

  • Omirulleh, S., Abraham, M., Golovkin, M., Stefanov, I., Karabaev, M.K., Mustardy, L., Morocz, S. and Dudits, D. (1993). Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21: 415–428.

    Google Scholar 

  • Ozias-Akins, P. and Vasil, I.K. (1982). Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma 110: 95–105.

    Google Scholar 

  • Ozias-Akins, P. and Vasil, I.K. (1983). Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat). Protoplasma 117: 40–44.

    Google Scholar 

  • Ozias-Akins, P., Ferl, R. and Vasil, I.K. (1986). Somatic hybridization in the Gramineae: Pennisetum americanum (L.) K. Schum. (pearl millet) + Panicum maximum Jacq. (Guinea grass). Molec. Gen. Genet. 203: 365–370.

    CAS  Google Scholar 

  • Phillips, R.L. and Vasil, I.K. (eds.) (1994). Advances in Cellular and Molecular Biology of Plants, Vol. 1. DNA-Based Markers in Plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Potrykus, I. (1980). The old problem of protoplast culture: cereals. In: Advances in Protoplast Research. L. Ferenczy, G.L. Farkas and G. Lazar (eds.), Akademiai Kiado, Budapest, pp. 243–254.

    Google Scholar 

  • Potrykus, I., Harms, C.T. and. Lorz, H (1979). Callus formation from cell culture protoplasts of corn (Zea mays L.). Theor. Appl. Genet. 54: 209–214.

    Google Scholar 

  • Prioli, L.M. and Sondahl, M.R. (1989). Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L.). Bio/Technology 7: 589–594.

    Google Scholar 

  • Qureshi, J.A., Hucl, P. and Kartha, K.K. (1992). Is somaclonal variation a reliable tool for spring wheat improvement? Euphytica 60: 221–228.

    Google Scholar 

  • Rajasekaran, K., Hein, M.B., Davis, G.C., Carnes, M.G. and Vasil, I.K. (1987a). Endogenous plant growth regulators in leaves and tissue cultures of napier grass (Pennisetum purpureum Schum.). J. Plant Physiol. 130: 13–25.

    CAS  Google Scholar 

  • Rajasekaran, K., Hein, M.B. and Vasil, I.K. (1987b). Endogenous abscisic acid and indole-3acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum.: effects in vivo and in vitro of glyphosate, fluridone and paclobutrazol. Plant Physiol. 84: 47–51.

    PubMed  CAS  Google Scholar 

  • Rajasekaran, K.,Schank, S.C. and Vasil, I.K. (1986). Characterization of biomass production and phenotypes of plants regenerated from embryogenic callus cultures of Pennisetum americanum x P. purpureum (hybrid Napiergrass). Theor. Appl. Genet. 73: 4–10.

    Google Scholar 

  • Redway, F.A., Vasil, V., Lu, D. and Vasil, I.K. (1990a). Identification of callus types for longterm maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theor. Appl. Genet. 79: 609–617.

    Google Scholar 

  • Redway, F.A., Vasil, V. and Vasil, I.K. (1990b). Characterization and regeneration of wheat (Triticum aestivum L.) embryogenic cell suspension cultures. Plant Cell Rep. 8: 714–717.

    CAS  Google Scholar 

  • Rhodes, C.A., Lowe, K.S. and Ruby, K.L. (1988a). Plant regeneration from protoplasts isolated from embryonic maize cell cultures. Bio/Technology 6: 56–60.

    Google Scholar 

  • Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J.J. (1988b). Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    PubMed  CAS  Google Scholar 

  • Shenoy, V.B. and Vasil, I.K. (1992). Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of Napier grass (Pennisetum purpureum Schum.). Theor. Appl. Genet. 83: 947–955.

    CAS  Google Scholar 

  • Shillito, R.D., Carswell, G.K., Johnson, C.M., DiMaio, J.J. and Harms, C.T. (1989). Regen-eration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.

    Google Scholar 

  • Shimamoto, K., Terada, R., Izawa, T. and Fujimoto, H. (1989). Transgenic rice plants regen-erated from transformed protoplasts. Nature 338: 274–276.

    CAS  Google Scholar 

  • Shimron-Abarbanell, D. and Breiman, A. (1991). Comprehensive molecular characterization of tissue-culture-derived Hordeum marinum plants. Theor. Appl. Genet. 83: 71–80.

    Google Scholar 

  • Somers, D.A., Rines, H.W., Gu, W., Kaeppler, H.F. and Bushnell, W.R. (1992). Fertile, transgenic oat plants. Bio/Technology 10: 1589–1594.

    CAS  Google Scholar 

  • Srinivasan, C. and Vasil, I.K. (1986). Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.). J. Plant Physiol. 126: 41–48.

    CAS  Google Scholar 

  • Straus, J. and LaRue, C.D. (1954). Maize endosperm tissue grown in vitro, I: Culture requirements. Am. J. Bot. 41: 687–694.

    Google Scholar 

  • Swedlund, B. and Vasil, I.K. (1985). Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theor. Appl. Genet. 69: 575–581.

    Google Scholar 

  • Tabaeizadeh, Z., Ferl, R.J. and Vasil, I.K. (1986). Somatic hybridization in the Gramineae: Saccharum officinarum L. (sugarcane) + Pennisetum americanum (L.) K. Schum. (pearl millet). Proc. Natl. Acad. Sci. USA 83: 5616–5619.

    Google Scholar 

  • Takebe, I., Labib, G. and Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwiss. 58: 318–320.

    Google Scholar 

  • Takamizo, T., Spangenberg, G., Suginobu, K. and Potrykus, I. (1991). Intergeneric somatic hybridization in Gramineae: Somatic hybrid plants between tall fescue (Festuca arundinacea Schreb.) and Italian rye grass (Lolium multiflorum Lam.). Mol. Gen. Genet. 231: 1–6.

    Google Scholar 

  • Terada, R., Kyozuka, J., Nishibayashi, S. and Shimamoto, K. (1987). Plantlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola Vasing). Mol. Gen. Genet. 210: 39–43.

    Google Scholar 

  • Terakawa, T., Sato, T. and Koike, M. (1992). Plant regeneration from protoplasts isolated from embryogenic suspension cultures of creeping bentgrass (Agrostis palustris Huds.). Plant Cell Rep. 11: 457–46 1.

    Google Scholar 

  • Tomes, D.T. and Smith, D.S. (1985). The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor. Appl. Genet. 70: 505–509.

    Google Scholar 

  • Uchimiya, H., Iwata, M., Nojiri, C., Samarajeewa, P.K.,Takamatsu, S., Ooba, S., Anzai, H., Christensen, A.H., Quail, P.H. and Toki, S. (1993). Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology 11: 835–836.

    CAS  Google Scholar 

  • Valles, M.P., Wang, Z.Y., Montavon, P., Potrykus, I. and Spangenberg, G. (1993). Analysis of genetic stability of plants regenerated from suspension cultures and protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep. 12: 101–106.

    Google Scholar 

  • Van der Valk, P., Zaal, M.A.C.M. and Creemers-Molenaar, J. (1988). Regeneration of albino plantlets from suspension culture derived protoplasts of Poa pratensis L. (Kentucky bluegrass). Euphytica S: 169–176.

    Google Scholar 

  • Vasil, I.K. (1983). Isolation and culture of protoplasts of grasses. Int. Rev. Cytol. Suppl. 16: 79–88.

    Google Scholar 

  • Vasil, I.K. (1987). Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128: 193–218.

    Google Scholar 

  • Vasil, I.K. (1988). Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology 6: 397–402.

    Google Scholar 

  • Vasil, I.K. (1990). The realities and challenges of plant biotechnology. Bio/Technology 8: 296–301.

    Google Scholar 

  • Vasil, I.K. (1993). Cell culture, molecular biology and the improvement of grasses. IAPTC Newslet 72: 1–10.

    Google Scholar 

  • Vasil, I.K. and Vasil, V. (1986a). Regeneration in cereal and other grass species. In: Cell Culture and Somatic Cell Genetics of Plants, Vol. 3. Plant Regeneration and Genetic Variability. I.K. Vasil (ed.), Academic Press, Orlando, pp. 121–150.

    Google Scholar 

  • Vasil, I.K. and Vasil, V. (1992). Advances in cereal protoplast research. Physiol. Plant. 85: 279–283.

    CAS  Google Scholar 

  • Vasil, V. and Vasil, I.K. (1979). Isolation and culture of cereal protoplasts. I. Callus formation from pearl millet (Pennisetum americanum) protoplasts. Z. Pflanzenphysiol. 92: 379–383.

    Google Scholar 

  • Vasil, V. and Vasil, I.K. (1980). Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor. Appl. Genet. 56: 97–99.

    Google Scholar 

  • Vasil, V. and Vasil, I.K. (1981a). Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum x P. purpureum hybrid. Am. J. Bot. 68: 864–872.

    Google Scholar 

  • Vasil, V. and Vasil, I.K. (1981b). Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann. Bot. 47: 669–678.

    Google Scholar 

  • Vasil, V. and Vasil, I.K. (1982a). Characterization of an embryogenic cell suspension culture derived from inflorescences of Pennisetum americanum (pearl millet; Gramineae). Am. J. Bot. 69: 1441–1449.

    Google Scholar 

  • Vasil, V. and Vasil, I.K. (1982b). The ontogeny of somatic embryos of Pennisetum americanum (L.) K. Schum.: in cultured immature embryos. Bot. Gaz. 143: 454–465.

    Google Scholar 

  • Vasil, V. and Vasil, I.K. (19866). Plant regeneration from friable embryogenic callus and cell suspension cultures of Zea mays L. J. Plant Physiol. 123: 211–227.

    Google Scholar 

  • Vasil, V., Wang, D. and Vasil, I.K. (1983). Plant regeneration from protoplasts of Pennisetum purpureum Schum. (Napier grass). Z. Pflanzenphysiol. 111: 319–325.

    Google Scholar 

  • Vasil, V., Vasil, I.K. and Lu, C. (1984). Somatic embryogenesis in long-term callus cultures of Zea mays. Am. J. Bot. 71: 158–161.

    Google Scholar 

  • Vasil, V., Lu, C. and Vasil, I.K. (1985). Histology of somatic embryogenesis in cultured embryos of maize (Zea mays L.). Protoplasma 127: 1–8.

    Google Scholar 

  • Vasil, V., Ferl, R.J. and Vasil, I.K. (1988). Somatic hybridization in the Gramineae: Triticum monococcum L. (Einkorn) + Pennisetum americanum (L.) K. Schum. (pearl millet). J. Plant Physiol. 132: 160–163.

    CAS  Google Scholar 

  • Vasil, V., Redway, F.A. and Vasil, I.K. (1990). Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.). Bio/Technology 8: 429–433.

    Google Scholar 

  • Vasil, V., Castillo, A.M., Fromm, M.E. and Vasil, I.K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674.

    CAS  Google Scholar 

  • Vasil, V., Srivastava, V., Castillo, A.M., Fromm, M.E. and Vasil, I.K. (1993). Rapid production of trangenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11: 1553–1558.

    Google Scholar 

  • Wan, C. and Vasil, I.K. (1994). Plant regeneration from protoplasts, embryogenic suspensions, and cryopreserved cells of Napier grass (Pennisetum purpureum Schum.) (in prep.).

    Google Scholar 

  • Wan, Y. and Lemaux, P.G. (1994). Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104: 37–48.

    PubMed  CAS  Google Scholar 

  • Wang Z., Nagel, J., Potrykus, I. and Spangenberg, G., (1993a). Plants from cell suspension derived protoplasts of Lolium species. Plant Sci. 94: 179–193.

    CAS  Google Scholar 

  • Wang, Z., Takamizo, T., Iglesias, V.A., Osusky, M., Nagel, J., Potrykus, I. and Spangenberg, G. (1992). Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Bio/Technology 10: 691–696.

    PubMed  CAS  Google Scholar 

  • Wang, Z., Valles, M.P., Montavon, P., Potrykus, I. and Spangenberg, G. (1993b). Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep. 12: 95–100.

    Google Scholar 

  • Weeks, J.T., Anderson, O.D. and Blechl, A.E. (1993). Rapid production of multiple independent lines of fertile transgenic wheat. Plant Physiol. 102: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Wei, Z. and Xu, Z. (1990). Regeneration of fertile plants from embryogenic suspension culture protoplasts of Sorghum vulgare. Plant Cell Rep. 9: 51–53.

    CAS  Google Scholar 

  • Wenck, A.R., Conger, B.V., Trigiano, R.N. and Sams, C.E. (1988). Inhibition of somatic embryogenesis in orchard grass by endogenous cytokinins. Plant Physiol. 88: 990–992.

    PubMed  CAS  Google Scholar 

  • Wernicke, W. and Brettell, R. (1980). Somatic embryogenesis from Sorghum bicolor leaves. Nature 287: 138–139.

    Google Scholar 

  • Yamada, Y. (1977). Tissue culture studies on cereals. In: Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture. J. Reinert and Y.P.S. Bajaj (eds.), Springer-Verlag, Berlin, pp. 144–159.

    Google Scholar 

  • Yamada, Y., Yang, Z.Q. and Tang, D.T. (1986). Plant regeneration from protoplast derived callus of rice (Oryza sativa L.). Plant Cell Rep. 4: 85–88.

    Google Scholar 

  • Yang, Y.M., He, D.D. and Scott, K.J. (1993). Plant regeneration from protoplasts of durum wheat (Triticum durum Desf. cv. D6962). Plant Cell Rep. 12: 320–323.

    Google Scholar 

  • Yang, Z., Shikanai, T., Mori, K. and Yamada, Y. (1989). Plant regeneration from cytoplasmic hybrids of rice (Oryza sativa L.). Theor. Appl. Genet. 77: 305–310.

    CAS  Google Scholar 

  • Zhong, H., Bolyard, M.G., Srinivasan, C. and Sticklen, M.B. (1993). Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep. 13: 1–6.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vasil, I.K., Vasil, V. (1994). In vitro Culture of Cereals and Grasses. In: Vasil, I.K., Thorpe, T.A. (eds) Plant Cell and Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2681-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2681-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4327-6

  • Online ISBN: 978-94-017-2681-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics