Skip to main content

Modifying the Amino Acid Composition of Grains Using Gene Technology

  • Chapter
Plant Biotechnology 2002 and Beyond

Abstract

Animals cannot synthesise 10 of the 20 amino acids needed for protein production and must obtain these “essential” amino acids from their diet. Although cereals and legumes are major sources of protein for humans and livestock, individually these crops do not supply the full complement of essential amino acids. Cereal grains are deficient in lysine whilst legume grains are deficient in the sulfur containing amino acids cysteine and methionine. Traditional plant breeding has attempted to improve the balance of essential amino acids in seed proteins. Good progress has been made in breeding high lysine corn, but breeding of high methionine legumes has met with only limited success. More recently, gene technology (GT) has been used to introduce new metabolic enzymes or storage proteins into cereals, legumes and other plants and has shown potential in addressing the nutritional deficiencies in these crops (Falco et al., 1995; Altenbach et al., 1992; Pickardt et al., 1995; Molvig et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach S.B., Chiung-Chi K., Staraci L.C., Pearson K.W., Wainwright C., Georgescu and Townsend J. (1992). Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol. 18: 235–245.

    CAS  Google Scholar 

  • Falco S.C., Guida T., Mauvais J., Sanders C., Ward R.T. and Webber P. (1995) Transgenic canola and soybean seeds with increased lysine. Biotech. 13: 577–582.

    Article  CAS  Google Scholar 

  • Molvig L., Tabe L., Eggum B.O., Moore A., Craig S., Spencer D. and Higgins T.J.V. (1997). Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94: 8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Pickardt T., Saalbach 1., Waddell D., Meixner M., Müntz K. and Schieder O. (1995). Seed specific expression of the 2S albumin gene from Brazil nut (Bertholletia excelsa) in transgenic Vicia narbonensis. Mol. Breed. 1: 295–301.

    CAS  Google Scholar 

  • Ravindran V., Tabe L.M., Molvig L., Higgins T.J.V. and Bryden W.L. (2002). Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius L) with broiler chickens. J. Sci. Food. Agric. 82: 280–285

    Article  CAS  Google Scholar 

  • Roesler K.R. and Rao A.G. (1999). Conformation and stability of barley chymotrypsin inhibitor-2 (CI-2) mutants containing multiple lysine substitutions. Protein Eng. 12: 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Tabe L. and Higgins T.J.V. (1998). Engineering plant protein composition for improved nutrition. Trends in Plant Science 3: 282–286

    Article  Google Scholar 

  • Tabe L., Hagan N. and Higgins T.J.V. (2002). Plasticity of seed protein composition in response to nitrogen and sulfur availability. Current Opinion in Plant Biology 5: 212–217

    Article  PubMed  CAS  Google Scholar 

  • White C.L., Tabe L.M., Dove H., Hamblin J., Young P., Phillips N., Taylor R., Gulati S., Ashes J. and Higgins T.J.V. (2001). Transgenic lupin seed containing sunflower albumin has a higher nutritional value for sheep than seed from the non-transgenic parent. J. Sci. Food Agric. 81: 147–154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hagan, N.D., Tabe, L.M., Molvig, L., Higgins, T.J.V. (2003). Modifying the Amino Acid Composition of Grains Using Gene Technology. In: Vasil, I.K. (eds) Plant Biotechnology 2002 and Beyond. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2679-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2679-5_62

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6220-8

  • Online ISBN: 978-94-017-2679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics