Skip to main content

Evaluation of Constitutive Cestrum Yellow Leaf Curling Virus Promoter in Maize and Tomato

  • Chapter
Plant Biotechnology 2002 and Beyond

Abstract

We have cloned and evaluated two versions of a novel, strong and constitutive promoter from Cestrum yellow leaf-curling virus (CmYLCV) called CmpC (short- 346bp) and CmpS (longer- 400bp), which can be used for regulating transgene expression in a wide variety of plant species. CmYLCV belongs to the Caulimoviridae family and was first reported in Cestrum parqui from the Solanaceae by Ragozzino (1974). Recently, CmYLCV was cloned and seven open reading frames were identified in the genomic sequence (Hohn et al., 2001). To evaluate the utility of the CmYLCV promoter to drive expression of heterologous genes in plants, two versions of the full-length transcript promoter were cloned in front of the GUS, CAT and FP reporter genes and tested in transient assays in Nicotiana plumbaginifolia, Orichophragmus violaceus and Oriza sativa protoplasts as well as in stably transformed Zea mays and Lycopersicon esculentum. The transient expression experiments show that, depending on the plant system used, the expression level of CmpC and CmpS promoter fragments are higher than the expression level of the widely used 35S promoter from Cauliflower Mosaic Virus (Hohn et al., 2001) and that the longer promoter fragment is the weaker one. Expression analysis of CmpC and CmpS promoter fragments in stably transformed maize (Figurel) have shown that both fragments are on average ten times greater than the strong constitutive Ubi 1 promoter from Z. mays (Christensen et al., 1992) and that the expression levels in tomato (Figure 2) are comparable with the strong, constitutive SMAS promoter (Ni et al., 1994). Moreover, the spatial expression analysis has shown that both promoters express in various tissue types, except pollen in both maize and tomato and that both promoter fragments retain their high expression levels through at least two generations. We limited our analysis to the single copy events only (Ingham et al., 2001) since it is a widely accepted idea that the copy number of a transgene affects the expression level in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Christensen A., Sharrock R., and Quail P. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.

    Google Scholar 

  • Hohn T., Stavolone L., de Haan P.T., Ligon H.T. and Kononova M. 2001. Cestrum yellow leaf curling virus promoters. Patent: WO 0173087-A.

    Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G. 2001. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31: 132.

    PubMed  CAS  Google Scholar 

  • Ni M., Cui D., Einstein J., Narasimhulu S., Vergara C., and Gelvin S. 1995 Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J. 7: 651–676.

    Article  Google Scholar 

  • Ragozzino, A. (1974). Ann. Fac. Sci. Agr. Univ. Napoli IV 8: 249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kononova, M., Stavolone, L., Hohn, T. (2003). Evaluation of Constitutive Cestrum Yellow Leaf Curling Virus Promoter in Maize and Tomato. In: Vasil, I.K. (eds) Plant Biotechnology 2002 and Beyond. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2679-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2679-5_46

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6220-8

  • Online ISBN: 978-94-017-2679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics