Skip to main content

Investigation and Development of Bacillus thuringiensis Insecticidal Proteins for Expression in Transgenic Plants

  • Chapter
Plant Biotechnology 2002 and Beyond
  • 38 Accesses

Abstract

In 1901 Ishiwata reported that the spore-forming bacterium Bacillus thuringiensis (Bt), caused death of the silkworm (Bombyx mori) (DuImage and Aizawa, 1982). Subsequently Bt has been found to produce three groups of novel protein toxins that are specific for a large number insect crop pests and some nematodes (de Maagd et al., 2001). The Cry and Cyt toxins (δ-endotoxins) are produced as cytoplasmic inclusions during sporulation and the Vip toxins (Vegetative Insecticidal Proteins) are secreted from the cells during vegetative growth. In vivo the Cry and Cyt toxins bind to insect-specific receptors on the surface of gut epithelial cells and in a second, irreversible step insert into the cell membrane to form leakage channels that result in cell death by colloid osmotic lysis (Knowles and Ellar, 1987). The receptors for some Cry toxins have been shown to be aminopeptidase-N and cadherin-like proteins exposed on the gut epithelial cell surface. Much less is known about the mechanism of the secreted Vip proteins and their receptors, but a recent report (Estruch et al US patent 5,877,012) claims that Vip3a (89kDa) binds to the epithelial cell surface protein Tenascin-X and causes cell lysis by triggering apoptosis. Vipl and Vip2 are binary toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angsuthanasombat, C., Crickmore, N. and Ellar, D.J. (1993) Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis Cry1VB S-endotoxin; FEMS Microbiol. Letts. 111: 255–262.

    CAS  Google Scholar 

  • Aronson, A. I., C. Geng, and L. Wu. (1999) Aggregation of Bacillus thuringiensis Cry 1A toxins upon binding to target insect larval midgut vesicles. Appl. Environ. Microbiol. 65: 2503–2507.

    Google Scholar 

  • Bradley, D., Harkey, M. A., Kim, M. K., Biever, K. D. and Bauer, L. S. (1995) The insecticidal Cry1B crystal protein of Bacillus thuringiensis subsp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J. Invertebr. Pathol. 65: 162–173.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A. H. & Perrimon, N. (1993) Targeted gene expression as a means of altering cell fate and generating dominant phenotypes. Development 118: 401–415.

    PubMed  CAS  Google Scholar 

  • Burton, S.L., Ellar, D.J., Li, J. and Derbyshire, D.J. (1999) N-acetylgalactosamine on the putative insect receptor aminopeptidase-N is recognized by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287: 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, J, Convents, D., Van Damme, J., Boets, A., Van Rie, J. and Ellar, D.J. (1997) Intramolecular Proteolytic Cleavage of Bacillus thuringiensis Cry ILIA S-Endotoxin may facilitate its coleopteran toxicity. J. Invert. Pathol. 70: 41–49.

    Article  CAS  Google Scholar 

  • Cooper, M.A., Carroll, J., Travis, E.R., Williams, D.H. and Ellar, D.J. (1998) Bacillus thuringiensis Cryl Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Biochem. J. 333: 677–683.

    PubMed  CAS  Google Scholar 

  • de Maagd, R.A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17: 193–199.

    Article  PubMed  Google Scholar 

  • Dulmage, H.T. and Aizawa, K. (1982) Distribution of Bacillus thuringiensis in nature; In “Microbial and viral pesticides” (Kurstak E., Ed.), pp. 209–237; Marcel Dekker, Inc., New York.

    Google Scholar 

  • Gazit, E., P. La Rocca, M. S. Sansom, and Y. Shai. (1998) The structure and organisation within the membrane of helices composing the pore-forming domain of Bacillus thuringiensis S-endotoxin are consistent with an “umbrella-like” structure of the pore. Proc. Natl. Acad. Sci. USA 95: 12289–12294.

    Article  PubMed  CAS  Google Scholar 

  • Gill, M. (1999) PhD Thesis, University of Cambridge Hodgman, T.C. and Ellar, D.J. (1990). Models for the structure and function of the Bacillus thuringiensis S-endotoxins determined by compilation analysis. J. DNA Sequencing & Mapping 1: 97–106.

    Google Scholar 

  • Knight, P.J.K., Crickmore, N. and Ellar, D.J. (1994) The receptor for Bacillus thuringiensis Cry1A(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexto is aminopeptidase N. Mol. Microbiol. 11: 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Knight, P. J. K., Knowles, B. H. and Ellar, D. J. (1995) Molecular cloning of an insect aminopeptidase-N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J. Biol. Chem. 30: 17765–17770.

    Google Scholar 

  • Knowles, B.H. and Ellar, D.J. (1986) Characterisation and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. kurstaki lepidopteran-specific 6-endotoxins J. Cell Sci. 83: 89–101.

    PubMed  CAS  Google Scholar 

  • Knowles, B.H. and Ellar, D.J. (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis 8-endotoxins with different specificity; Biochim. Biophys. Acta 924: 509–518.

    Article  CAS  Google Scholar 

  • Knowles, B.H., Knight, P.J.K. and Ellar, D.J. (1991) N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis; Proc. R. Soc. Lond. B 245: 31–35.

    Article  CAS  Google Scholar 

  • Koller, C.N., Bauer, L.S. and Hollingworth, R.M. (1992) Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native 6-endotoxin crystals. Biochem. Biophys. Res. Comm. 184: 692–699.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A. S. M., and A. I. Aronson. (1999). Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis 8-endotoxin. J. Bacteriol. 181: 6103–6107.

    PubMed  CAS  Google Scholar 

  • Li, J., Carroll, J. and Ellar, D.J. (1991) Crystal structure of insecticidal 8.-endotoxin from Bacillus thuringiensis at 2.5A resolution; Nature 353: 815–821.

    CAS  Google Scholar 

  • Li, J., Koni, P.A. and Ellar, D.J. (1996) Structure of the mosquitocidal 8-endotoxin Cyt2Aal from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation; J. Mol. Biol. 257: 129–152.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Derbyshire D. J., Promdonkoy, B. & Ellar D. J. (2001) Structural implications for the transformation of the Bacillus thuringiensis 8-endotoxins from water-soluble to membrane-inserted forms. Biochem. Soc. Trans. 29: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Lightwood, D.J., Ellar, D.J. & Jarrett, P. (2000) The Role of Proteolysis in Determining the Potency of the Bacillus thuringiensis Cryl Ac 8-endotoxin. Applied Environm. Microbiol. 66: 5174–5181.

    Google Scholar 

  • Masson, L., B. E. Tabashnik, Y.-B. Liu, R. Brousseau, and J.-L. Schwartz. (1999) Helix 4 of the Bacillus thuringiensis Cryl Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274: 31996–32000.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, C.N., Ahmad, W. and Ellar, D.J. (1989); Evidence for two different types of insecticidal P2 toxins with dual specificity in Bacillus thuringiensis subspecies; J. Bacteriol. 171, 5141–5147.

    PubMed  CAS  Google Scholar 

  • Phelps, C. B. and Brand. A. H. (1998) Ectopic gene expression in Drosophila using the GAL4 system. Methods-A Companion to Methods in Enzymology 14: 367–379.

    Article  CAS  Google Scholar 

  • Tigue, N.J., Jacoby, J. and Ellar, D.J. (2001) The a-helix 4 residue, Asn135, is involved in the oligomerisation of the CrylAcl and CrylAb5 Bacillus thuringiensis toxins. Applied Environ. Microbiol. 67: 5715–5720.

    Article  CAS  Google Scholar 

  • Vie, V., N. Van Mau, P. Pomarède, C. Dance, J. L. Schwartz, R. Laprade, R. Frutos, C. Rang, L. Masson, F. Heitz and C. Le Grimellec. (2001). Lipid-induced pore formation of the Bacillus thuringiensis Cry I Aal insecticidal toxin. J. Membrane Biol. 180: 195–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ellar, D.J. (2003). Investigation and Development of Bacillus thuringiensis Insecticidal Proteins for Expression in Transgenic Plants. In: Vasil, I.K. (eds) Plant Biotechnology 2002 and Beyond. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2679-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2679-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6220-8

  • Online ISBN: 978-94-017-2679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics