Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

Abstract

The difficulty in advancing in Ecology is due, in part, to the fact that this science uses a mainly qualitative language instead of a more formal or mathematical one. Therefore, many ecologists’ efforts are expended in controversies resulting from the vagueness of ecological concepts, for example: stability, equilibrium, ecosystem, community, and so on. When approaching the study of steady-state phytoplankton assemblage, the different interpretations of these concepts can paralyse fruitful discussion. In the following pages, there is an endeavour to both restrict and precise the meaning of some of the concepts related to this topic and to broaden the range of possibilities of steady-state in the field. It is argued here that, in order to test whether or not there is a steady-state assemblage, first of all a variable or descriptor of such assemblage should be chosen. It is also argued that a steady-state does not necessarily occur as the result of a competition process with a stable equilibrium end. Moreover, we suggest that some other processes and mechanisms could control the assemblage as a steady-state. Examples of steady-state phytoplankton assemblage observed in the field (perturbed and unperturbed situations), but probably not related to a competition system equilibrium, are shown: the alternate dominance of two species (Cryptomonas erosa and Limnothrix redekei) during seven unperturbed consecutive weeks in El Porcal Lake (a gravel pit in Central Spain); the co-dominance of five species (Planktothrix agardhii,Limnothrix redekei, Dictytosphaerium sp., Cyclotella meneghiniana and Cryptomonas erosa) over nine unperturbed weeks in the same lake; the dominance of different species in thirty one fluctuating sites of a wetland (La Safor, Mediterranean Spanish coast) and the persistence of some non-dominant species (Peridinium willei and Planktonema lauterbornii) over more than three weeks in the water column mixing period in Las Madres Lake (Central Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Álvarez-Cobelas, M. 1991. Optical limnology of a hypertrophic, gravel-pit lake. Int. Rev. ges. Hydrobiol. 76: 213–223.

    Google Scholar 

  • Álvarez-Cobelas, M., A. Baltanás, J. L. Velasco, M. Valladolid, M. Izquierdo and E. Martín. 1993. Slow overturn in a gravel-pit lake. Int. Ver. theor. angewan. Limnol.: Verh. 25: 83–87.

    Google Scholar 

  • Connell, J., 1978. Diversity in tropical rain forest and coral reefs. Science 199: 1304–1310.

    Article  Google Scholar 

  • Dodson, S. I., S. E. Arnott K. L. Cottingham 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Article  Google Scholar 

  • Drake, J., 1990. Communities as assembled structures: Do rules govern pattern? Trends in Ecol. Evol. 5: 159–164.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology. Chapman Hall, London. 384 pp.

    Book  Google Scholar 

  • Imboden, D. M. A. Lerman, 1978. Chemical models of Lakes. In Lerman, A. (eds.), Lakes: Chemestry, Geology, Physics. Springer, New York: 341–356.

    Google Scholar 

  • Jeffries, M. D. Mills, 1990. Freshwater ecology. Belhaven Press, London. 285.

    Google Scholar 

  • Keddy, P. A., 1989. Competition. Chapman Hall, London. 202 pp.

    Chapter  Google Scholar 

  • Keddy, P. A., 2000. Wetland Ecology. Cambridge University Press, Cambridge. 614 pp.

    Google Scholar 

  • Keddy, P. E. Weiher, 1999. The scope and goals of research on assembly rules. In: Weiher, E. P. Keddy (eds), Ecological Assembly rules. Cambridge University Press, Cambridge. 418 pp.

    Google Scholar 

  • Lampert W. U. Sommer, 1997. Limnoecology: the ecology of lakes and streams. Oxford University Press, New York.

    Google Scholar 

  • Levins, R., 1979. Coexistence in a variable environment. Am. Nat. 114: 765–783.

    Google Scholar 

  • Lund, J. W. G., C. Kipling E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Morabito, G., A. Oggioni P. Panzani, 2003. Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: a case study from Lago Maggiore (N. Italy). Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 37–48.

    Google Scholar 

  • MacArthur, R. H. E. O. Wilson, 1967. The theory of island biogeography. Princeton University Press, Pricenton.

    Google Scholar 

  • Mayr, E., 1982. The growth of biological thought. Harvard University Press, Cambridge. 382 pp.

    Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 395–403.

    Google Scholar 

  • Pahl-Wostl, C., 1995. The dynamic nature of ecosystems. John Wiley Sons, Chichester. 267 pp.

    Google Scholar 

  • Patten, B. C. S. E. Jørgensen, 1995. Complex Ecology. Prentice Hall PTR, New Jersey. 705 pp.

    Google Scholar 

  • Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In Sandgren C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge Uni. Press, Cambridge: 134–174.

    Google Scholar 

  • Putman, R. J. Community Ecology. Chapman Hall, London. 178 pp.

    Google Scholar 

  • Reynolds, C., 1980. Phytoplankton assemblages and their periodicity in stratifying lake system. Hol. Ecol. 3: 141–159

    Google Scholar 

  • Reynolds, C., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge. 384 pp.

    Google Scholar 

  • Reynolds, C., 1998. The state of freshwater ecology. Freshwat. Biol. 39: 741–753.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.

    Article  Google Scholar 

  • Rodrigo, M. A., C. Rojo X. Armengol, 2003. Plankton biodiversity in a landscape of shallow water bodies (Mediterranean coast, Spain). Hydrobiologia 506–509 (in press).

    Google Scholar 

  • Rojo, C. M. Alvarez, 1992. Taxonomy and ecology of phytoplankton in a hypertrophic, gravel-pit lake. I. Cyanophyceae. Archiv für Protistenkunde 142: 77–90.

    Google Scholar 

  • Rojo, C. M. Alvarez, 1993a. Taxonomy and ecology of phytoplankton in a hypertrophic, gravel-pit lake. II. Cryptophyceae, Euglenophyceae. Nova Hedwigia 57: 47–63.

    Google Scholar 

  • Rojo, C. M. Alvarez, 1993b. Population dynamics of Planktothrix agardhii, Limnothrix redekei, Oscillatoria lanceaeformis and Pseudoanabaena limnetica (Cyanophyceae) in a hypertrophic shallow lake. Hydrobiologia 275 /276: 165–171.

    Google Scholar 

  • Rojo, C. M. Alvarez, 1993c. Hypertrophic phytoplankton and the intermediate disturbance hypothesis. Hydrobiologia 249: 43–57

    Article  Google Scholar 

  • Rojo, C. M. Alvarez, 1994. Taxonomy and ecology of phytoplankton in a shallow, hypertrophic lake. III. Diatomophyceae. Archiv für Hydrobiol. Algol. Stud. 72: 53–70.

    Google Scholar 

  • Rojo, C. M. Alvarez, 1995a. Taxonomy and ecology of phytoplankton in a shallow, hypertrophic lake. IV. Chlorophyceae, Chlorococcales. Archiv für Hydrobiol. Algol. Stud. 77: 7–35.

    Google Scholar 

  • Rojo, C. M. Alvarez, 1995b. Taxonomy and ecology of phytoplankton in a shallow, hypertrophic lake. V. Chlorophyceae, Volvocales. Archiv für Hydrobiol. Algol. Stud. 79: 19–37.

    Google Scholar 

  • Rojo, C., K. Kiss, M. Álvarez-Cobelas M. A. Rodrigo, 1999. Population dynamics of Cyclotella ocellata (Bacillariophyceae): endogenous and exogenous factors. Archiv für Hydrobiol. 145: 479–495.

    CAS  Google Scholar 

  • Rojo, C. M. Álvarez-Cobelas, 2001. Phytoplankton structure and dynamics at a daily temporal scale: response to the thermal overturn. Archiv für Hydrobiol. 151: 549–569.

    Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercal- ibrations. Schweizerische Zeitschrift für Hydrol. 43: 34–62.

    Google Scholar 

  • Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 13–36.

    Google Scholar 

  • Scheffer, M., S. Reinaldi, J. Huisman F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Article  Google Scholar 

  • Sommer, U., 1985. Comparison between steady-state and non-steady state competition: experiments with natural phytoplankton Limnol. Oceanogr. 30: 335–346

    CAS  Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds P. Juhász-Nagy, 1993. Hutchinson’s heritage: The diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Google Scholar 

  • Stoyneva, M. P., 2003. Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 169–176.

    Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton. 296 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rojo, C., Álvarez-Cobelas, M. (2003). Are there steady-state phytoplankton assemblages in the field?. In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics