Occurrence and Putative Role of Melatonin in Plants

  • Jan Kolář
  • Ivana Macháčková
Conference paper


Many processes in living organisms, at both molecular and at higher levels, are rhythmic and many developmental processes (including sexual reproduction, flowering) are regulated photoperiodically. In last two decades much attention has been paid to the mechanisms underlying time measurement — to the biological clock. In both animals and plants, time measurement is based on a network of negative feedbacks in the synthesis of two proteins, which form a dimer (e.g. period and timeless or clock and cycle) (Sassone-Corsi, 1998). Many other components have been identified as well (Krishnan et al., 2001). One of the molecules, which is believed to couple the central oscillator to the measured output rhythms in animals, is the hormone melatonin (see review by Reiter, 1993). Melatonin (5-methoxy-Nacetyltryptamine) regulates daily rhythms and photoperiodic reactions mainly in vertebrates, but it also occurs in invertebrates (Hardeland and Fuhrberg, 1996). It was discovered in 1958 in amphibians, where it regulates accumulation of the skin pigment melanin, from which function its name is derived (Lerner et al., 1958). Since then, melatonin has been found to be ubiquitous in the animal kingdom and has also been shown to be present in some lower and higher plants.


Melatonin Level Photoperiodic Regime Hormone Melatonin Photoperiodic Flower Induction Pterygophora Californica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzer, I. and Hardeland, R. (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra, Science 253, 795–797.PubMedCrossRefGoogle Scholar
  2. Balzer, I., Poegeller, B. and Hardeland, R. (1993) Circadian rhythms of indoleamines in a dinoflagellate Gonyaulax polyedra: Persistence of melatonin rhythm in constant darkness and relationship to 5- methoxytryptamine, in: Y. Touitou, J. Arendt and P. Pevet (eds.) Melatonin and the pineal gland. From basic science to clinical applications, Excerpta Medica, Amsterdam,pp. 83–86.Google Scholar
  3. Balzer, I., Bartolomaeus, B. and Höcker, B. (1998) Circadian rhythm in melatonin content in Chlorophyceae, Abstr. Workshop Eur. Soc. Chronobiol., News from the Plant Chronobiology Research, Markgrafenheide.Google Scholar
  4. Banerjee, S. and Margulis, L. (1973) Mitotic arrest by melatonin, Exp. Cell Res. 78, 314–318. Benítez-King, G. And Antón-Tay, F. (1993) Calmodulin mediates melatonin cytoskeletal effects, Experientia 49, 635–641.Google Scholar
  5. Benítez-King, G., Rios, A., Martinez, A. and Antón-Tay, F. (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin, Biochim. Biophys. Acta 1290, 191–196.PubMedCrossRefGoogle Scholar
  6. Dubbels, R., Reiter, R.J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H.W. and Schloot, W. (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry, J. Pineal Res. 18, 28–31.PubMedCrossRefGoogle Scholar
  7. Dubocovich, M.L., Cardinalli, D.P., Guardiola-Lemaitre, B., Hagan, R.M., Krause, D.N., Sugden, D., Yocca, F.D. and Vanhoutte, P.M. (1998) Melatonin receptors, in The IUPHAR Compendium of Receptor Characterization and Classification, IUPHAR Media, London, pp. 187–193.Google Scholar
  8. Frosch, S., Wagner, E. and Cumming, B.C. (1973) Endogenous rhythmicity in energy transduction. I. Rhythmicity in adenylate kinase, NAD- and NADP-linked glyceraldehydes-3-phosphate dehydrogenase in Chenopodium rubrum, Can. J. Bot. 51: 1355–1367.CrossRefGoogle Scholar
  9. Fuhrberg, B., Balzer, I., Hardeland, R., Werner, A. and Lünning, K. (1996) The vertebrate pineal hormone melatonin is produced by the brown alga Pterygophora californica and mimics dark effects on growth rate in the light, Planta 200, 125–131.CrossRefGoogle Scholar
  10. Goldman, B.D. (2001) Mammalian photoperiodic system. Formal properties and neuroendocrine mechanisms of photoperiodic time measurement, J. Biol. Rhythm 16, 283–301.CrossRefGoogle Scholar
  11. Hardeland, R., Balzer, I., Poegeller, B., Fuhrberg, B., Uria, H., Behrmann, G., Wolf, R., Meyer, T.J. and Reiter, J. (1995) On the primary functions of melatonin in evolution–mediation of photoperiodic signals in a unicell photooxidation, and scavenging of free radicals, J. Pineal Res. 18: 104–111.PubMedCrossRefGoogle Scholar
  12. Hardeland, R. and Fuhrberg, B. (1996) Ubiquitous melatonin–presence and effects in unicells, plants and animals, Trends Comp. Biochem. Physiol. 2, 25–45.Google Scholar
  13. Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtanikaneko, R., Hara, M., Suzuki, T. and Reiter, R.J. (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates, Biochem. Mol. Biol. 35, 627–634.Google Scholar
  14. King, R. W. (1975) Multiple circadian rhythms regulate flowering responses in Chenopodium rubrum, Can. J. Bot. 53: 2631–2638.CrossRefGoogle Scholar
  15. KoláĜ, J. and Macháþková, I. (1994) Melatonin: does it regulate rhythmicity and photoperiodism also in higher plants? Flower. Newsletter 17: 53–54.Google Scholar
  16. KoláĜ, J., Macháþková, I., Eder, J., Prinsen, E., Van Dongen, W., van Onckelen, H. and Illnerová, H. (1997) Melatonin: occurrence and daily rhythm in Chenopodium rubrum, Phytochemistry 44, 1407–1413.CrossRefGoogle Scholar
  17. KoláĜ, J., Johnson, C.H. and Macháþková, I. (2003) Exogenously apllied melatonin (N-acetyl-5- methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum L., Physiol. Plant. 118, 1–8.CrossRefGoogle Scholar
  18. Krishnan, B., Levide, J.D., Lynch, K.S., Dowse, H.B., Funes, P., Hall, J.C., Hardin, P.E. and Dryer, S.E. (2001) A new role for cryptochrome in a Drosophila circadian oscillator, Nature 411, 313–317.Google Scholar
  19. Lerner, A.B., Chase, J.D., Takahashi, Y., Lee, T.H. and Mori, W. (1958) Isolation of melatonin, the pineal factor that lightens melanocytes, J. Am. Chem. Soc. 81, 2587.CrossRefGoogle Scholar
  20. Lorenz, M. and Lünning, K. (1999) Detection of endogenous melatonin in the marine red macroalgae Porphyra umbilicalis and Palmaria palmata by enzyme-linked immunoassay (ELISA) and effects of melatonin administration on algal growth, Biol. Rhythm Res. 30, 243.Google Scholar
  21. Macháþková, I., Krekule, J. Eder, J., Seidlová, F. and Strnad, M. (1993) Cytokinins in photoperiodic induction of flowering in Chenopodium species, Physiol. Plant. 87, 160–166.Google Scholar
  22. Macháþková, I., Chauvaux, N., Dewitte, W. and Van Onckelen, H. (1997) Diurnal fluctuations in ethylene formation in Chenopodium rubrum, Plant Physiol. 113, 981–985.Google Scholar
  23. Manchester, L.C., Tan, D.X., Reiter, R.J., Park, W., Monis, K., and Qi, W. (2000) High levels of melatonin in the seeds of edible plants. Possible function in germ tissue protection, Life Sci. 67, 3023–3029.PubMedCrossRefGoogle Scholar
  24. Maywood, E.S., Hastings, M.H., Max, M., Ampleford, E., Menaker, M. and Loudon, A.S.I. (1993) Circadian and daily rhythms of melatonin in the blood and pineal gland of free-running and entrained Syrian hamster, J. Endocrinol. 136, 65–73.PubMedCrossRefGoogle Scholar
  25. Murch, S.J. Simmons, C.B. and Saxena, P.K. (1997) Melatonin in feverfew and other medical plants, Lancet 350, 1598–1599.PubMedCrossRefGoogle Scholar
  26. Murch, S.J., KrishnaRaj S. and Saxena, P.K. (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St.JohnĞ wort (Hypericum perforatum L. cv. Athos) plants, Plant Cell Rep. 19: 698–704.CrossRefGoogle Scholar
  27. Normann J. and Wagner, E. (1997) Specific changes in phase relationship between stem extension rate and leaf movement upon floral induction in Chenopodium spec., Endocytobiosis and Cell Res. 12: 117–118.Google Scholar
  28. Pavlová, L. and Krekule, J. (1984) Fluctuation of free IAA under inductive and non-inductive photoperiods in Chenopodium rubrum, Plant Growth Regul. 2: 91–94.CrossRefGoogle Scholar
  29. Pavlová, L. and Krekule, J. (1990) The effect of IAA application on endogenous rhythm of flowering in Chenopodium rubrum L., Biol. Plant. 32, 277–287.CrossRefGoogle Scholar
  30. Poegeller, B., Balzer, I., Hardeland, R. and Lerchl, A. (1991) Pineal hormone melatonin oscillates also in a dinoflagellate Gonyaulax polyedra, Naturwiss. 78, 268–269.CrossRefGoogle Scholar
  31. Reiter, R.J. (1993) The melatonin rhythm: both a clock and a calendar, Experientia 49, 654–664.PubMedCrossRefGoogle Scholar
  32. Reiter, R.J. (1997) Antioxidant actions of melatonin, Adv. Pharmacol. 38, 103–117.PubMedCrossRefGoogle Scholar
  33. Reiter, R.J., Melchiorri, D., Sewerynek, E., Poegeller, B., Barlow-Walden, L., Chuang, J., Ortiz, G.G. and Acuna-Castroviejo, D. (1995) J. Pineal Res. 18, 1–11.PubMedCrossRefGoogle Scholar
  34. Sassone-Corsi, P. (1998) Molecular clocks: Mastering time by gene regulation, Nature 392, 871–874.PubMedCrossRefGoogle Scholar
  35. Ullmann, J., Seidlová, F., Krekule, J. and Pavlová, L. (1985) Chenopodium rubrum as a model plant for testing flowering effects of PGRs, Biol. Plant. 27, 367–372.Google Scholar
  36. Vanddek, J. (1998) Cellular mechanisms of melatonin action, Physiol. Rev. 78, 687–721.Google Scholar
  37. Wiesenberg, I., Missbach, M., Kahlem, J.-P., Schräder, M. and Carlberg, C. (1995) Transcriptional activation of the nuclear receptor RZRa by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand, Nucl. Acids Res. 23, 327–333.PubMedCrossRefGoogle Scholar
  38. Wolf, K., Koláf, J., Witters, E., van Dongen, W., van Onckelen, H. and Machábková, I. (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod, J. Plant Physiol. 158, 1491–1493.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Jan Kolář
    • 1
    • 2
  • Ivana Macháčková
    • 2
  1. 1.Department of Plant Physiology, Faculty of ScienceCharles UniversityPraha 2Czech Republic
  2. 2.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPraha 6Czech Republic

Personalised recommendations