Advertisement

Three Roles for Gibberellin in Flowering

  • Rod King
Conference paper

Abstract

Seasonal flowering of plants involves responses to many environmental signals including changes in irradiance, temperature and daylength. The range and complexity of environmental inputs is summarized by Thomas and Vince-Prue (1997) but integrating this information into plant response has only begun recently. Genetic studies of flowering time in Arabidopsis (Simpson and Dean, 2002) highlight a network of interacting pathways involving plant response to daylength, vernalization, photosynthetic input and gibberellin (GA) and a fifth, autonomous pathway, whereby the plant progresses to flowering in the absence of external signals.

Keywords

Shoot Apex Inflorescence Formation Vegetative Shoot Apex Floral Stimulus Inflorescence Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blázquez, M.A. and Weigel, D. (2000) Integration of floral inductive signals in Arabidopsis, Nature 404, 889–892.PubMedCrossRefGoogle Scholar
  2. Blázquez, M.A., Soowal, L.N., Lee, I. and Weigel D. (1997) LEAFY expression and flower initiation in Arabidopsis, Development 124, 3835–3844.Google Scholar
  3. Blázquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800.PubMedGoogle Scholar
  4. Chailakhyan, M. Kh. (1937) Concerning the hormonal nature of plant development processes, C.R.(Dokl.) Acad. Sci. URSS. 16, 227–230.Google Scholar
  5. Chailakhyan, M. Kh. (1958) Hormonal factors in the flowering of plants, Soviet Plant Physiol. 5, 547–563.Google Scholar
  6. Chailakhyan, M. Kh. (1988) 50 years of the hormonal theory of plant development, Soviet Plant Physiol. 35, 466–480.Google Scholar
  7. Evans, L.T. and Rijven, A.H.G.C. (1967) Inflorescence initiation in Lolium temulentum L. XI Early increases in the incorporation of 32P and 35S by shoot apices during induction, Aust. J. Biol. Sci. 20, 1033–1042.Google Scholar
  8. Evans, L.T. and Wardlaw, I.F. (1966) Independent translocation of l4C-labelled assimilates and of the floral stimulus in Lolium temulentum, Planta 68, 319–326.CrossRefGoogle Scholar
  9. Evans, L.T., King, R.W., Chu, A., Mander, L.N. and Pharis, R.P. (1990) Gibberellin structure and florigenic activity in Lolium temulentum, a long day plant, Planta 182, 97–106.CrossRefGoogle Scholar
  10. Gocal, G.F.W. (1997) Molecular biology of floral evocation in Lolium temulentum. PhD Dissertation. Australian National University, Canberra, 181 pp.Google Scholar
  11. Gocal, G.F.W., Poole, A.T., Gubler, F., Watts, R.J., Blundell, C. and King, R.W. (1999) Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation, Plant Physiol. 119, 1271–1278.PubMedCrossRefGoogle Scholar
  12. Gocal, G.F.W., King, R.W., Blundell, C.A., Schwartz, O.M., Andersen, C.H. and Weigel, D. (2001a) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis, Plant Physiol. 125, 1788–1801.PubMedCrossRefGoogle Scholar
  13. Gocal, G.F.W., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., MacMillan, C.P., Li, S.F., Parish, R.W., Dennis, E.S., Weigel, D. and King, R.W. (2001b) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis, Plant Physiol. 127, 1682–1693.CrossRefGoogle Scholar
  14. Gubler, F., Kalla, R., Roberts, J.K. and Jacobsen, J.V. (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha -amylase gene promoter, Plant Cell 7, 1879–1891.PubMedGoogle Scholar
  15. Hackett,W.P. and Sachs, R.M. (1967) Chemical control of flowering in Bougainvillea ‘San Diego Red”, Proc. Amer. Soc. Hortic. Sci. 90, 361–364.Google Scholar
  16. Hedden, P. and Phillips, A.L. (2000) Gibberellin metabolism: new insights revealed by the genes, Trends in Plant Sci. 5, 523–530.CrossRefGoogle Scholar
  17. Junttila,O., Heide, O.M., Lindgard, B. and Ernsten, A. (1997) Gibberellins and the photoperiodic control of leaf growth in Poa pratensis, Physiol. Plant. 101, 599–605.CrossRefGoogle Scholar
  18. King, R.W. and Ben-Tal, Y. (2001) A florigenic effect of sucrose in Fuchsia and its inhibition by gibberellin-induced assimilate competition, Plant Physiol. 125, 1–9.CrossRefGoogle Scholar
  19. King, R.W., Blundell, C. and Evans, L.T. (1993) The behaviour of shoot apices of Lolium temulentum in vitro as the basis of an assay system for florigenic extracts, Aust. J. Plant Physiol. 20, 337–348.CrossRefGoogle Scholar
  20. King, R.W., Evans, L.T., Mander, L.M., Moritz, T., Pharis, R.P. and Twitchin, B. (2003) Synthesis of gibberellin GA6 and examination of its role in flowering of Lolium temulentum, Phytochem. 62, 77–82.CrossRefGoogle Scholar
  21. King, R.W., Moritz, T., Evans, L.T., Junttila, O. and Herlt, A.J. (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex, Plant Physiol. 127, 624–632.PubMedCrossRefGoogle Scholar
  22. Knox, R.B. and Evans, L.T. (1966) Inflorescence initiation in Lolium temulentum L. VIII. Histochemical changes at the shoot apex during induction, Aust. J. Biol. Sci. 19, 233–245.Google Scholar
  23. Knox, R.B. and Evans, L.T. (1968) Inflorescence initiation in Lolium temulentum L. XII. An autoradiographic study of evocation in the shoot apex, Aust. J. Biol. Sci. 21, 1083–1094.Google Scholar
  24. Lang, A. (1965) Physiology of flower initiation, in W. Ruhland (ed.), Encyclopedia of Plant Physiology XV/1, Springer Verlag, Berlin, pp. 1380–1536.Google Scholar
  25. Lang. A., Chailakhyan, M.Kh. and Frolova, I.A. (1977) Promotion and inhibition of flower formation in a day-neutral plant in grafts with a short-day and a long-day plant, Proc. Natl. Acad. Sci. USA 74, 2412–2416.PubMedCrossRefGoogle Scholar
  26. McDaniel, C.N., King, R.W. and Evans, L.T. (1991) Floral determination and in vitro floral differentiation in isolated shoot apices of Lolium temulentum L., Planta 185, 9–16.CrossRefGoogle Scholar
  27. Metzger, J.D. (1995) Hormones and reproductive development, in P.J. Davies (ed.), Plant Hormones.Physiology, Biochemistry and Molecular Biology, Kluwer Academic, Dordrecht, pp 617–648.Google Scholar
  28. Milyaeva, E.L. and Romanov, G.A. (2002) Molecular genetics returns to basic postulates of the florigen theory, Russian Plant Physiol. 49, 438–444.CrossRefGoogle Scholar
  29. Moncur, M.W. and Hasan, O. (1994) Floral induction in Eucalyptus nitens, Tree Physiol. 14, 1303–1312.PubMedCrossRefGoogle Scholar
  30. Monselise, S.P. and Goldschmidt, E.E. (1982) Alternate bearing in fruit trees, Hortic. Rev. 4, 128–73.Google Scholar
  31. Pharis, R.P. and King, R.W. (1985) Gibberellins and reproductive development in seed plants, Annu. Rev. Plant Physiol. 36, 517–568.CrossRefGoogle Scholar
  32. Pharis, R.P., Evans, L.T., King, R.W. and Mander, L.N. (1987) Gibberellins, endogenous and applied, in relation to flower induction in the long-day plant Lolium temulentum, Plant Physiol. 84, 1132–1138.PubMedCrossRefGoogle Scholar
  33. Rijven, A.H.G.C. and Evans, L.T. (1967) Inflorescence initiation in Lolium temulentum L. X. Changes in 32P incorporation into nucleic acids of the shoot apex at induction, Aust. J. Biol. Sci. 20, 13–24.PubMedGoogle Scholar
  34. Sachs, R.M. and Bretz, C.F. (1961) The effect of daylength, temperature and gibberellic acid upon flowering of Fuchsia hybrida, Amer. Soc. Hortic. Sci. 80, 581–588.Google Scholar
  35. Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S. and Matsuoka, M. (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice, Plant Physiol. 125, 1508–1516.PubMedCrossRefGoogle Scholar
  36. Sauter, M., Mekhedov, S.L. and Kende, H. (1995) Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes, Plant J. 7, 623–632.PubMedCrossRefGoogle Scholar
  37. Simpson, G.G. and Dean, C. (2002) Arabidopsis, the Rosetta stone of flowering time?, Science 296, 285–289.Google Scholar
  38. Thomas, B. and Vince-Prue, D. (1997) Photoperiodism in plants, Academic Press, London, 428 pp.Google Scholar
  39. Xu, YunLing., Gage, D.A. and Zeevaart, J.A.D. (1997) Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on the GA4 and GA5 loci, Plant Physiol. 114, 1471–1461.PubMedCrossRefGoogle Scholar
  40. Zeevaart, J.A.D. (1983) Gibberellins and flowering, in A. Crozier (ed.), The Biochemistry and Physiology of Gibberellins, Vol 2., Praeger, New York, pp. 333–373.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Rod King
    • 1
  1. 1.CSIRO Plant IndustryCanberraAustralia

Personalised recommendations