Advertisement

Hormonal Regulation of Crassulacean Acid Metabolism (CAM) and Inter-Organ Stress Signal Transduction

  • Vl. V. Kuznetsov
  • A. G. Kruglova
  • O. I. Molodyuk
  • V. V. Karyagin
  • A. B. Meshcheryakov
  • V. V. Ragulin
  • V. Yu. Rakitin
  • V. P. Kholodova
Conference paper

Abstract

Plants respond to damaging effects of unfavourable environmental factors by dramatic changes in cell metabolism. The synthesis of a set of new macromolecules is involved in long-term adaptations to extreme conditions. De novo formation of some new enzymes in response to stress allows plants to maintain homeostasis and fulfill their ontogenetic cycle in environments which are deleterious for life.

Keywords

Turgor Pressure Unfavourable Environmental Factor Epidermal Bladder Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dörffling, K., Sonka, B. and Tietz, D. (1974) Variation and metabolism of abscisic acid in pea seedlings and after water stress. Planta 121, 57–66.CrossRefGoogle Scholar
  2. Hose, E., Steudle, E. and Hartung, W. (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell-and root-pressure probes, Planta 211, 874–882.PubMedCrossRefGoogle Scholar
  3. Kholodova, V.P., Neto, D.S., Meshcheryakov, A.B., Borisova, N.N., Alexandrova,S.N. and Kuznetsov, Vl.V. (2002) Can stress-induced CAM provide for performing the developmental program in Mesembryanthemum crystallinum plants under long-term salinity?, Russ. J. Plant Physiol. 49, 336–343.Google Scholar
  4. Kuznetsov, Vl.V., Neto, D.S., Borisova, N.N., Dam, Z.B., Rakitin, V.Yu., Alexandrova, S.N. and Kholodova, V.P. (2000) Stress-induced CAM development and the limit of adaptation potential in Mesembryanthemum crystallinum plants under extreme conditions, Russ. J. Plant Physiol. 47, 190–198.Google Scholar
  5. Malone, M. (1993) Hydraulic signals, Phil. Trans. R. Soc. Lond. 341, 33–40.CrossRefGoogle Scholar
  6. Pospíšilová, J., Synková, H. and Rulcová, J. (2000) Cytokinins and water stress, Biol. Plant. 43, 321–328.CrossRefGoogle Scholar
  7. Schmitt, J.M. and Piepenbrock, M. (1992) Regulation of phosphoenolpyruvate carboxylase and Crassulacean acid metabolism induction in Mesembryanthenum crystallinum L. by cytokinin: modulation of leaf gene expression by roots?, Plant Physiol. 99, 1664–1669.PubMedCrossRefGoogle Scholar
  8. Tardieu, F. (1996) Drought perception by plants. Do cells of droughted plants experience water stress?, Plant Growth Regul. 20, 93–104.CrossRefGoogle Scholar
  9. Taybi, T. and Cushman J.C. (1999) Signaling events leading to Crassulacean acid metabolism induction in the common ice plant, Plant Physiol. 121, 545–555.PubMedCrossRefGoogle Scholar
  10. Thomas, J.C. and Bohnert, H.J. (1993) Salt stress perception and plant growth regulators in the halophyte Mesembryanthenum crystallinum L., Plant Physiol. 103, 1299–1304.PubMedGoogle Scholar
  11. Thomas, J.C., McElwain, E.F. and Bohnert, H.J. (1992) Convergent induction of osmotic stress-responses, Plant Physiol. 100, 416–423.PubMedCrossRefGoogle Scholar
  12. Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000) Two-component systems in plant signal transduction, Trends Plant Sci. 5, 67–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Vl. V. Kuznetsov
    • 1
  • A. G. Kruglova
    • 1
  • O. I. Molodyuk
    • 1
  • V. V. Karyagin
    • 1
  • A. B. Meshcheryakov
    • 1
  • V. V. Ragulin
    • 1
  • V. Yu. Rakitin
    • 1
  • V. P. Kholodova
    • 1
  1. 1.K.A. Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations