Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 374))

Abstract

Polycrystalline grain aggregates are cellular networks filling space at random, like soap froths. Their structure (in statistical equilibrium) and evolution (steady state coarsening) are universal, due to local elementary topological transformations (ETT), which are the “collisions” responsible for statistical equilibrium. The structure and its evolution can be represented as a many-body problem with short-ranged interactions. The bodies are paraboloids attached to the grains, with one additional degree of freedom beside their position in space. ETT are caused by simple and orthogonal motions of the bodies. The model describes quantitatively the sintering of polycrystalline mosaics, scaling, steady state distributions of grain sizes and shapes, with mean-field growth exponent. Individual grains obey von Neumann’s law. The difference in coarsening rates between nano- and microcrystalline mosaics is related to the grain size distribution. The structure (Laguerre froth) has remarkable symmetries, stereology (it is identical to its own cut, and can be cut or lifted to higher dimension while preserving its geometry and statistics), and conformal invariance in any dimension and at all times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Weaire and N. Rivier, Contemp. Physics 25 (1984) 59.

    Article  Google Scholar 

  2. C.S. Smith, Scient. Amer. 190 (1954) 58.

    Article  Google Scholar 

  3. H.V. Atkinson, Acta Met. 36 (1988) 469.

    Article  CAS  Google Scholar 

  4. J.A. Glazier, S.P. Gross and J. Stavans, 1987, Phys. Rev. A 36 (1987) 306.

    Article  Google Scholar 

  5. J.A. Glazier, Dynamics of Cellular Patterns, Ph.D Thesis, U. Chicago (1989).

    Google Scholar 

  6. D.J. Srolovitz, M.P. Anderson, P.S. Sahni and G.S. Grest, Acta Metall. 32 (1984) 793; Phil. Mag.B (1991).

    Google Scholar 

  7. H. Telley, 1989, Modélisation et Simulation Bidimensionnelle de la Croissance des Polycristaux, PhD Thesis, EPFL, Lausanne.

    Google Scholar 

  8. W.W. Mullins, J. Appl. Phys. 27 (1956) 900; 59 (1986) 1341. B. Castaing, in Appendix A of Glazier et al. [3].

    Google Scholar 

  9. R.W. Siegel, MRS Bull., Oct. 1990, 60.

    Google Scholar 

  10. H. Hahn, J.L. Logas and R.S. Averback, J. Mater. Res. 5 (1990) 609.

    Article  CAS  Google Scholar 

  11. R.W. Siegel, this volume.

    Google Scholar 

  12. N. Rivier, “Geometry and evolution of soap froth”, preprint. See also T. Herdtle and H. Aref, Proc. Roy. Soc. A (1991), to appear.

    Google Scholar 

  13. J. von Neumann, in Metal Interfaces, Amer. Soc. Metals, Cleveland (1952) 108.

    Google Scholar 

  14. D.M. Duffy, Thesis, University of London, 1982; N. Rivier, in Amorphous Materials, Modeling of Structure and Properties,V. Vitek, ed., AIME (1983), 81.

    Google Scholar 

  15. N. Rivier, J. Physique (Coll) 51 (1990) C7–309.

    Google Scholar 

  16. L. Gaultier, J. Ecole Polytechn. 16 (1813) 147.

    Google Scholar 

  17. W. Fischer and E. Koch, Zeits. Kristallogr. 150 (1979) 248.

    Google Scholar 

  18. B.J. Gellatly and J.L. Finney, J. Non-cryst. Solids 50 (1982) 313.

    Article  CAS  Google Scholar 

  19. H. Imai, M. Iri and K. Murota, SIAM J. Comput. 14, (1985) 93.

    Article  Google Scholar 

  20. F. Aurenhammer, SIAM J. Comput. 16 (1987) 76. The power of a point with respect to a circle is called Laguerre’s “distance”, hence the name for the partition [5].

    Google Scholar 

  21. G.E. Brown, in R.D. Mattuck, A Guide to Feynman Diagrams,McGraw Hill, NY (1967), §1.1.

    Google Scholar 

  22. M. Duneau and A. Katz, Phys. Rev. Lett. 54 (1985) 2688; discovered independently by P.A. Kalugin, A.Yu. Kitayev and L.S. Levitov, by V. Elser, and by R.K.P. Zia and W.J. Dallas.

    Google Scholar 

  23. P. Bak, Phys. Rev. B32 (1985).

    Google Scholar 

  24. H. Bohr, Acta Math. 45 (1925) 29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rivier, N. (1992). Structure and Evolution of Nano- and Microcrystalline Grain Aggregates. In: Jena, P., Khanna, S.N., Rao, B.K. (eds) Physics and Chemistry of Finite Systems: From Clusters to Crystals. NATO ASI Series, vol 374. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2645-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2645-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2647-4

  • Online ISBN: 978-94-017-2645-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics