Skip to main content

Light direction and polarization

  • Chapter
Photomorphogenesis in plants

Abstract

The perception of light direction yields important information enabling organisms to optimize their position in the natural environment by appropriate orientation movements. Well-known examples are phototaxis and phototropism. Phototaxis is the orientation movement of motile organisms with respect to light direction. The phenomenon can be demonstrated easily using phytoflagellates, desmids or cyanobacteria (Section 5.4.2.3). If unidirectional low irradiance light is applied, these photosynthetic microorganisms usually move towards the light source (= positive phototaxis), whereas in high irradiance light they move away from it (= negative phototaxis). Buder (1919) showed in a basic experiment that the direction in which the light beam propagates is the important factor for orientation movements of the phototactic phytoflagellate Euglena, and not a gradient of irradiance (Chapter 4.5): in a converging light beam organisms move against the irradiance gradient and towards the light source (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Dennison, D. S., 1979. Phototropism. In: Encyclopedia of Plant Physiology, New Series, 7, Physiology of Movements, Haupt, W. and Feinleib, M. E. eds., pp. 506–566, Springer-Verlag, Berlin.

    Google Scholar 

  • Haupt, W., 1983. The perception of light direction and orientation responses in chloroplasts. In: The Biology of Photoperception, Symp. Soc. Exp. Biol. 36, Cosens, D. J. and Vince-Prue, D. eds., pp. 423–442, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Jenkins, F. A. and White, H. E., 1976. Fundamentals of Optics. McGraw-Hill, Tokyo

    Google Scholar 

  • Poff, K. L., 1983. Perception of a unilateral light stimulus. Phil. Trans. R. Soc. Lond. B 303, 479–487.

    Article  CAS  Google Scholar 

  • Banbury, G. H., 1952. Physiological studies in the Mucorales. Part I. The phototropism of sporangiophores of Phycomyces blankesleeanus. J. Exp. Bot. 3, 77–85.

    Article  CAS  Google Scholar 

  • Bergman, K., Burke, P. V., Cerdá-Olmedo, E., David, C. N., Delbrück, M., Foster, K. W., Goodell, E. W., Heisenberg, N., Meissner, G., Zalokar, M., Dennison, D. S., and Shropshire, Jr., W., 1969. Phycomyces. Bacteriol. Rev. 33, 99–157.

    CAS  Google Scholar 

  • Buder, J., 1918. Die Inversion des Phototropismus bei Phycomyces. Ber. Dtsch. Bot. Ges. 36, 104–105.

    Google Scholar 

  • Buder, J., 1919. Zur Kenntnis der phototaktischen Richtungsbewegungen. Jb. Wiss. Bot. 58, 105–220.

    Google Scholar 

  • Buder, J., 1920. Neue phototropische Fundamentalversuche. Ber. Dtsch. Bot. Ges. 38, 10–19.

    Google Scholar 

  • Delbrück, M. and Reichardt, W., 1956. System analysis for the light growth reactions of Phycomyces. In: Cellular Mechanisms in Differentiation and Growth, Rudnick, D. ed., pp. 3–44, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Delbrück, M. and Shropshire, Jr., W., 1960. Action and Transmission spectra of Phycomyces. Plant Physiol. 35, 194–204.

    Article  Google Scholar 

  • Dennison, D. S., 1965. Steady-state phototropism in Phycomyces. J. Gen. Physiol. 48, 393–408.

    Article  CAS  Google Scholar 

  • Dennison, D. S. and Foster, K. W., 1977. Intracellular rotation and the phototropic response of Phycomyces. Biophys. J. 18, 103–123.

    Article  CAS  Google Scholar 

  • Etzold, H., 1965. Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix mas (L.) Schott. Planta 64, 254–280.

    Article  CAS  Google Scholar 

  • Foster, K. W. and Smyth, R. D., 1980. Light antennas in phototactic algae. Microbiol. Rev. 44, 572–630.

    PubMed  CAS  Google Scholar 

  • Galland, P. and Lipson, E. D., 1984. Photophysiology of Phycomyces blankesleeanus. Photochem. Photobiol. 40, 795–800.

    Article  CAS  Google Scholar 

  • Häder, D.-P., 1979. Photomovement. In: Encyclopedia of Plant Physiology, New Series, 7, Haupt, W. and Feinleib, M. E. eds., pp. 268–309, Springer Verlag, Berlin.

    Google Scholar 

  • Hartmann, E., Klingenberg, B., and Bauer, L., 1983. Phytochrome-mediated phototropism in protonemata of the moss Ceratodon purpureus Brid. Photochem. Photobiol. 38, 599–603.

    Article  Google Scholar 

  • Haupt, W., 1960. Die Chloroplastenbewegung bei Mougeotia II. Die Induktion der Schwachlichtbewegung durch linear polarisiertes Licht. Planta 55, 465–479.

    Article  Google Scholar 

  • Haupt, W., 1970. Ãœber den Dichroismus von Phytochrom-660 und Phytochrom-730 bei Mougeotia. Z. Pflanzenphysiol. 62, 287–298.

    CAS  Google Scholar 

  • Haupt, W., 1982. Light-mediated movement of chloroplasts. Ann. Rev. Plant Physiol. 33, 205–233.

    Article  CAS  Google Scholar 

  • Haupt, W., 1984. Wavelength-dependent action dichroism: A theoretical consideration. Photochem. Photobiol. 39, 107–110.

    Article  CAS  Google Scholar 

  • Hertel, R., 1980. Phototropism of lower plants. In: Photoreception and Sensory Transduction in Aneural Organisms, Lenci, F. and Colombetti, G. eds., pp. 89–105, Plenum, New York.

    Chapter  Google Scholar 

  • Jesaitis, A. J., 1974. Linear dichroism and orientation of the Phycomyces photopigment. J. Gen. Physiol. 63, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Kadota, A., Wada, M., and Furuya, M., 1982. Phytochrome-mediated phototropism and different dichroic orientation of Pr and Pfr in protonemata of the fern Adiantum capillus-veneris L. Photochem. Photobiol. 35, 533–536.

    Article  CAS  Google Scholar 

  • Kraml, M. and Schäfer, E., 1983. Photoconversion of phytochrome in vivo studied by double flash irradiation in Mougeotia and Avena. Photochem. Photobiol. 38, 461–467.

    Article  CAS  Google Scholar 

  • Kraml, M., Enders, M., and Bürkel, N., 1984. Kinetics of the dichroic reorientation of phytochrome during photoconversion in Mougeotia. Planta 161, 216–222.

    Article  CAS  Google Scholar 

  • Löser, G. and Schäfer, E., 1984. Photogeotropism of Phycomyces: evidence for more than one photoreceptor. In: Blue Light Effects in Biological Systems, Senger, H. ed., pp. 118–124, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Neuscheler, W., 1967. Bewegung und Orientierung bei Micrasterias denticulata Bréb. im Licht. II. Photokinesis und Phototaxis. Z. Pflanzenphysiol. 57, 151–172.

    Google Scholar 

  • Omodeo, P., 1980. The photoreceptive apChapautus of flagellated algal cells: ComChapautive morphology and some hypotheses on functioning. In: Photoreception and Sensory Transduction in Aneural Organisms, Lenci, F. and Colombetti, G. eds., pp. 127–153, Plenum, New York.

    Chapter  Google Scholar 

  • Pohl, U. and Russo, E. A., 1984. Phototropism. In: Membranes and Sensory Transduction, Colombetti, G. and Lenci, F. eds., pp. 231–329, Plenum, New York.

    Chapter  Google Scholar 

  • Shropshire, Jr., W., 1962. The lens effect and phototropism of Phycomyces. J. Gen. Physiol. 45, 949–958.

    Article  CAS  Google Scholar 

  • Sundqvist, C. and Björn, L. O., 1983. Light induced linear dichroism in photoreversibly photo-chromic sensor pigments. II. Chromophore rotation in immobilized phytochrome. Photochem. Photobiol. 37, 69–75.

    Article  CAS  Google Scholar 

  • Wada, M., Kadota, A., and Furuya, M., 1983. Intracellular localization and dichroic orientation of phytochrome in plasma membrane and/or ectoplasm of a centrifuged protonema of fern Adiantum capillus veneris L. Plant Cell Physiol. 24, 1441–1447.

    CAS  Google Scholar 

  • Weisenseel, M. H., 1979. Induction of polarity. In: Encyclopedia of Plant Physiology, New Series, 7, Physiology of Movements, Haupt, W. and Feinleib, M. E. eds., pp. 485–505, Springer-Verlag, Berlin.

    Google Scholar 

  • Wettstein, D. V., 1965. Die Induktion und experimentelle Beeinflussung der Polarität bei Pflanzen. In: Encyclopedia of Plant Physiology, Differentiation and Development, 15/I Lang, A. ed., pp. 275–330, Springer-Verlag, Berlin.

    Google Scholar 

  • Zurzycki, J., 1980. Blue light-induced intracellular movement. In: The Blue Light Syndrome, Senger, H. ed., pp. 50–68, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kraml, M. (1986). Light direction and polarization. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2624-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2624-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3317-0

  • Online ISBN: 978-94-017-2624-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics