Skip to main content

Ultrafiltration with Peritoneal Dialysis

  • Chapter
Peritoneal Dialysis

Part of the book series: Developments in Nephrology ((DINE,volume 2))

Abstract

There is a clinical requirement to remove excess body water and its attendant electrolytes on a regular basis from patients with end stage renal failure. For patients treated with peritoneal dialysis this is accomplished osmotically rather than hydrostatically as is the common practice with hemodialysis. To date glucose is the only agent that has been accepted clinically for regulating the osmolality of peritoneal dialysis fluid for this purpose. The difficulty from overloading the patient with carbohydrate calories has only recently surfaced as a problem in patients under treatment with CAPD as noted in Chapter 10. As a result other osmotically active agents will undoubtedly be tested and applied clinically in the next few years. The present discussion will focus on glucose and its use as a driving force for ultrafiltration across the peritoneal membrane with the expectation that most of the principles developed for this solute will apply equally to other solutes that may be utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin J, Nolph KD, Popovich RP, Moncrief JW, Prowant B (1979) Drainage volume during continuous ambulatory peritoneal dialysis. asaio J 2: 54

    Google Scholar 

  2. Durbin RP (1960) Osmotic flow of water across permeable cellulose membranes. J Gen Physiol 44: 315

    Article  PubMed  CAS  Google Scholar 

  3. Henderson LW (1973) The problem of peritoneal membrane area and permeability. Kid Im 3: 409

    Article  CAS  Google Scholar 

  4. Pyle WK, Moncrief JW, Popovich RP (in press) Peritoneal transport evaluation in CAPD. Proc CAPD Int Symp II, May 9, 1980

    Google Scholar 

  5. Henderson LW, Nolph KD (1969) Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992

    Article  PubMed  CAS  Google Scholar 

  6. Nolph KD, Hano JE, Teschan PE (1969) Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern med 70: 931

    PubMed  CAS  Google Scholar 

  7. Brown ST, Ahearn DJ, Nolph KD (1973) Potassium removal with peritoneal dialysis. Kidney Int 4: 67

    Article  PubMed  CAS  Google Scholar 

  8. Spiegler KS, Kadem 0 (1966) Transport coefficients and salt rejection in uncharged hyperfiltration membrane. Desalination 1: 311

    CAS  Google Scholar 

  9. Villarroel F, Klein E, Holland F (1977) Solution flux in hemodialysis and hemofiltration membranes. Transactions of the amer Soc Artif Intern Organs 23: 225

    Article  CAS  Google Scholar 

  10. Pappenheimer JR, Landis EM (1963) Exchange of substances through the cappillary walls. In: Handbook of Physiology Vol. 2, Section 2, page 961, American Physiological Society, Washington, D.C.

    Google Scholar 

  11. Rosenbaum RW Hruska KA, Anderson C, Robson AM, Slatopolsky E, Klahr S (1979) lnulin: An inadequate marker of glomerular filtration rate in kidney donors and transplant recipients? Kidney Int 16: 999

    Google Scholar 

  12. Colton CK, Smith KA, Merrill EW, Friedman S (1971) Diffusion of urea in flowing blood. Am Inst Chem Engin J 17: 800

    Article  CAS  Google Scholar 

  13. Henderson LW (1966) Peritoneal ultrafiltration dialysis: Enhanced urea transfer using hyper-tonic peritoneal dialysis fluid. J Clin Invest 45: 950

    Article  PubMed  CAS  Google Scholar 

  14. Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH (1973) Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial & Transpl Assoc 10: 247

    CAS  Google Scholar 

  15. Andreoli TE, Schafer JA, Troutman SL: Coupling of solute and solvent flows in porous lipid bilayer membranes. J Gen Physiol 57: 479

    Google Scholar 

  16. Colton CK, Henderson LW, Ford CA, Lysaght MJ: Kinetics of hemodiafiltration. I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J Lab & Clin Med 85: 355

    Google Scholar 

  17. Henderson LW, Colton CK, tord CA (1975) Kinetics of hemodiafiltration II. Clinical characterization of a new blood cleansing modality. J Lab & Clin Med 85: 372

    CAS  Google Scholar 

  18. Colton CK (1969) Permeability and transport studies in batch and flow dialyzers with application to hemodialysis. Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  19. Carone FA, Banks DB, Post RS (1969) Micropuncture study of albumin excretion in the normal rat. Am J Physiol 55: I9A

    Google Scholar 

  20. Green DM, Antwiler GD, Moncrief JW, Decherd JF, Popovich R (1967) Measurement of the transmittance coefficient spectrum of Cuprophan and RP 69 membranes: Application to middle molecule removal via ultrafiltration. Trans Am Soc Artif Intern Organs 22: 627

    Google Scholar 

  21. Colton CK, Smith KA, Merrill and Reece JM (1970) Diffusion of organic solutes in stagnant plasma and red cell suspensions. Chem Eng. Prog Symp Series 66: 85

    Google Scholar 

  22. Wayland H, Silberber A (1978) Blood to lymph transport. Microvasc Res 15: 367

    Article  PubMed  CAS  Google Scholar 

  23. Miller FN, Wiegman DL, Joshua IG, Nolph KD, Rubin J (1979) Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exp Biol 161: 605

    PubMed  CAS  Google Scholar 

  24. Wayland H (1980) Transmural and interstitial molecular transport. Proc Int Symp CAPD, Paris, 1979, Excerpta Medica, Amsterdam, p 18

    Google Scholar 

  25. Nolph KD, Ghods A, Van Stone J, Brown PA (1976) The effects of intraperitoneal vasodilators on peritoneal clearance. Transactions of the Am Soc Artif Intern Organs 22: 586

    CAS  Google Scholar 

  26. Renkin EM (1969) Exchange of substances through capillary walls. In Circulatory and Respiratory mass Transport, Ciba Foundation Symposium, Boston, Little, Brown and Co

    Google Scholar 

  27. Zelman A, Gisser D, Whittam PJ, Parsons RH, Schuyler R (1977) Augmentation of peritoneal dialysis efficiency with programmed hyper/hypoosmotic dialysates. Trans Am Soc Artif Intern Organs 23: 203

    Article  PubMed  CAS  Google Scholar 

  28. Zelman A, Parsons R, Anzola E, Whittam P: Augmentation of peritoneal dialysis insufficiency with programmed hyper/hypoosmotic dialysate. Proc 11th Ann Contractors’ Conf, Artificial Kidney Program of the National Institute of Arthritis, Metabolism and Digestive Diseases, p 47

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, L. (1981). Ultrafiltration with Peritoneal Dialysis. In: Nolph, K.D. (eds) Peritoneal Dialysis. Developments in Nephrology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2563-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2563-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2565-1

  • Online ISBN: 978-94-017-2563-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics