Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 221))

  • 275 Accesses

Abstract

This paper presents a general review of some well established structural optimization techniques along with an outlook of a few particular research directions recently explored by the authors. Special attention is given to the problem of optimization under multiple load combinations in steel structures. Finally a parallel processing strategy for an optimal analysis and design of coupled field-structural problems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morris, A. J. (Ed.), (1982), Foundations of structural optimization: A unified approach, John Wiley and Sons, Chichester.

    Google Scholar 

  2. Gellatly, R., (1973), `Survey of the state-of-the-art of optimization technology within NATO countries,’ AGARD Conference Proceedings, AGARD—CP-123, Milan.

    Google Scholar 

  3. Michell, A. G. M., (1904), `The limits of economy of material in frame-structures,’ Phil. Mag. 8, 47, 6, (November).

    Google Scholar 

  4. Prager, W., (1981), `Unexpected results in structural optimization,’ J. Struct. Mech. 9, 1, 71–90.

    Article  MathSciNet  Google Scholar 

  5. Rozvany, G. I. N., (1976), Optimal design of flexural systems, Pergamon Press, Oxford.

    Google Scholar 

  6. Ziegler, H. (1958), `Kuppeln gleicher Festigkeit,’ Ingenieur-Archiv, Band X XVI.

    Google Scholar 

  7. Morley, C. T. (1966), `The minimum reinforcement of concrete slabs,’ Int. J. Mech. Sci. 8, 305–319.

    Article  Google Scholar 

  8. Drucker, D. C. and Shield, R. T., (1957), `Bounds on minimum weight design,’ Quart. Appl. Math., XV, 3, 269–281.

    MathSciNet  Google Scholar 

  9. Prager, W. and Shield, R. T., (1967), `A general theory of optimal plastic design,’ Trans. ASME, March, 184–186.

    Google Scholar 

  10. Massonnet, C. H., Olszak, E. and Phillips, A., (1979), Plasticity in structural engineering, fundamentals and applications, Springer, CISM Udine.

    Google Scholar 

  11. Prager, W. and Rozvany, G. I. N., (1977), `Optimal layout of grillages,’ J. Struct. Mech. 5, 1.

    Article  Google Scholar 

  12. Save, M. A., (1975), `A general criterion for optimal structural design,’ JOTA 15, 1, 119–129, (January).

    Google Scholar 

  13. Melosh, R. J., (1969), `Convergence in fully-stressed designing,’ AGARD Conf. Proc. No. 36, AGARD-CP-36–70, Istanbul, ( October).

    Google Scholar 

  14. Gallagher, R. H., (1973), “Fully stressed design,’ in Optimum structural design, R. H. Gallagher, and O. C. Zienkiewicz (Eds), John Wiley and Sons, London.

    Google Scholar 

  15. Gellatly, R. A. and Berke, L., `Optimality-criterion-based algorithms,’ ibid.

    Google Scholar 

  16. Artek, E., et al. (Eds.),(1984), New directions in optimal structural design,John Wiley and Sons, Chichester.

    Google Scholar 

  17. Venkayya, V. B., (1971), `Design of optimum structures,’ Computers and Structures 1, 12, 265–309.

    Google Scholar 

  18. Lipp, W., (1980), `Ein Verfahren zur optimalen Dimensionierung allgemeiner Fachwerkkonstruktionen und ebener Rahmentragwerke,’ Techn. wiss. Mitteilungen Nr. 80–3, Ruhr-Universität Bochum, Bochum.

    Google Scholar 

  19. Khot, N. S., (1981), `Algorithms based on optimality criteria to design minimum weight structures,’ Eng. Optimization 5, 73–90.

    Article  Google Scholar 

  20. Gellataly, R. A. et al., (1974), `OPTIM II, A MAGIC-compatible large scale automated minimum weight design program,’ AFFDL-TR-74–97.

    Google Scholar 

  21. Hadley, G., (1964), Nonlinear and dynamic programming, Addison-Weslex, Reading, Mass.

    MATH  Google Scholar 

  22. Wilkinson, J. et al.,(1977), ‘FASTOPT-A flutter and strength optimization program for lifting-surface structures,’ J. Aircraft 14 6, 581–587, (June).

    Google Scholar 

  23. Kiusallas, J. and Reddy, G. B. (1977), ‘DESAP - a structural design program with stress and displacement constraints,’ NASA CR-2794.

    Google Scholar 

  24. Thierauf, G. and Tgpcu, A., (1975), `Structural optimization using the force method,’ World Congress FEM Struct. Mech., Bournemouth, October.

    Google Scholar 

  25. Lipp, W. and Thierauf, G., (Sept. 1976), `The role of the force-and displacement-method for the optimization of structures with the Langrangian-multipier-technique,’ IASBE 10th Congress, Tokyo, September.

    Google Scholar 

  26. Gellatly, R. A. and Thom, R. D., (1979), Force method optmization, Rep. No. D2530–953005, Bell Aerospace Textron, ( December).

    Google Scholar 

  27. Rozvany, G. I. N., (1984), `Structural layout theory—the present state of knowledge,’ in New directions in optimum structural design, E. Atrekt (Ed.), John Wiley and Sons, Chichester.

    Google Scholar 

  28. Thierauf, G., (1978), `A method for optimal limit design of structures with alternative loads,’ Comp. Meth. Appl. Mech. Eng. 16, 135–149.

    Article  MATH  Google Scholar 

  29. Pape, G., (1979), `Eine quadratische Approximation des Bemessungsproblems idealplastischer Tragwerke,’ Dissertation, Universität Essen.

    Google Scholar 

  30. Pape, G. and Thierauf, G., (1981), `A quadratic approximation of a nonlinear structural design problmen,’ in Physical non-linearities in structural design analysis, J. Hult and J. Lemaitre ( Eds. ), Springer.

    Google Scholar 

  31. Schittkowski, K., (1983), `On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function,’ Math. Operationsforschung und Statistik, Ser. Optimization 14, 2, 197–216.

    MathSciNet  MATH  Google Scholar 

  32. Hock, W. and Schittkowski, K., (1983), `A comparative evaluation of 27 nonlinear programming codes,’ Computing 30, 335–358.

    Article  MathSciNet  MATH  Google Scholar 

  33. Vanderplaats, G. N., (1986), `Numerical optimization techniques,’ Nato-ASI, Computer Aided Optimal Design-Structureal and Mechanical Systems, M. Soares (Ed.), Troia, Portugal.

    Google Scholar 

  34. Eschenauer, H. (Ed.), (1984), Rechnerische und experimentelle Untersuchung zur Strukturoptimierung von Bauweisen, Institut für Mech. und Regelungstechn., Siegen.

    Google Scholar 

  35. Kneppe, G., `Methode der sequentiellen Linearisierung,’ SEQLI, ibid.

    Google Scholar 

  36. Baldur, R., (1972), `Structural optimization by inscribed hyperspheres,’ Proc. Am. Soc. Civ. Eng., J. Eng. Mech. Div., EM3, 503–518, (June).

    Google Scholar 

  37. Fox, R. L., (1971), Optimization methods for engineering design, Addison-Wesley, Reading, Mass.

    Google Scholar 

  38. Collatz, L. and Wetterling, W., (1966), Optimierungsaufgaben, Springer, Berlin.

    Book  MATH  Google Scholar 

  39. Schrader, K.-H., (1978), `MESY–Einführung in das Konzept und Benutzeranleitung für das Programmsystem MESY–MINI,’ Techn. wiss. Mitteilungen Nr. 78–11, Ruhr-Unversität-Bochum, Bochum.

    Google Scholar 

  40. Morris, A. J., (1984), `Structural optimization systems,’ in New directions in Optimum structural design, E. Atrek (Ed.), John Wiley and Sons, Chichester.

    Google Scholar 

  41. Harary, F., (1972), Graph theory, Addision-Wesley, Reading, Mass.

    Google Scholar 

  42. Kirsch, U., (1981), Optimum structural design, McGraw Hill, New York.

    Google Scholar 

  43. Steward, D. V., (1965), `Partitioning and tearing systems of equations,’ J . Siam Num. Anal., Ser. B 2, 2, 345–365.

    Google Scholar 

  44. Hörnlein, H. R. E. M., (1986), `Take–off in optimum structural design,’ NATO ASI, Techn. Univ. Lisbon, Troia, Portugal, 1, 205–234, (June).

    Google Scholar 

  45. Thierauf, G. (Ed.), (1985), BandB—Programmsystem zur Berechnung und Bemessung allgemeiner Tragwerke, Universität Essen, Essen.

    Google Scholar 

  46. Booz, W., (1984), `Zweistufenoptimierung von Stahlbetontragwerken mit Hilfe der sequentiellen quadratischen Programmierung,’ Dissertation, Universität Essen.

    Google Scholar 

  47. Booz, G., (1986), `Eine Dekompositionsmethode zur optimalen Bemessung von Tragwerken unter dynamischer Belastung,’ Dissertation, Universität Essen.

    Google Scholar 

  48. Thierauf, G., ‘Optimierung von Stahltrapezprofilen,’ unveröffentlicht.

    Google Scholar 

  49. Jüdt, B., (1989), PREFEM–A General Purpose F.E. Pre-processor,’ Universität–GHS–Essen, Fachbereich Bauwesen, Baumechanik/Statik.

    Google Scholar 

  50. Jüdt, B. and Kayvantash, K., (1989), POSTFEM—A General Purpose F.E. Post-processor,’ Universität–GHS–Essen, Fachbereich Bauwesen, Baumechanik/Statik.

    Google Scholar 

  51. Kayvantash, K., (1989), `BandB_T–Program For the Analysis and Design of Structures under Temperature Loading,’ Universität–GHS–Essen, Fachbereich Bauwesen, Baumechanik/Statik.

    Google Scholar 

  52. Kayvantash, K., (1989), `Optimal Design of Structures Subject to Simultaneous Mechanical and Thermal Loading,’ Doctorate Thesis, Universität–GHS–Essen, Fachbereich Bauwesen, Baumechanik/Statik, to be published.

    Google Scholar 

  53. Kayvantash, K. and Zacharias, A., (1988), ‘BandB/BandB_T: A Program for the Analysis, Design and Optimization of Structures,’ Proceeding of 2nd Cryogenic Technology Review Meeting held at DFVLR Köln–Porz.

    Google Scholar 

  54. Schwarz, H. A., (1869), `Über einige Abbildungsaufgaben,’ Ges. Math. Abh. 11.

    Google Scholar 

  55. DIN 1055—Design loads for buildings, Beuth-Verlag, Köln.

    Google Scholar 

  56. DIN 18800, Part 1 (1981), Steelstructures—Design and construction, Beuth-Verlag, Köln.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kayvantash, K., Schilling, U., Thierauf, G. (1992). Optimal Design and Optimization of Structures. In: Topping, B.H.V. (eds) Optimization and Artificial Intelligence in Civil and Structural Engineering. NATO ASI Series, vol 221. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2490-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2490-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4201-9

  • Online ISBN: 978-94-017-2490-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics