Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 534))

  • 819 Accesses

Abstract

Let M (resp. N) be a connected. smooth (= C x) n-dimensional manifold without boundary. We denote by C x (M) the ring of smooth real valued functions on M and by x(M) the Lie-algebra of all smooth vector fields on M. Recall that Xx(M) is a smooth map

$$X:M \to TM = \mathop U\limits_{x \in M} {T_x}M$$

such that X (x) = X x , ∈ T x M (= the tangent space of Mat x) for each xM. T x M may be characterized as the space of all derivations of the algebra of smooth real valued functions defined on neighborhoods of x. Note that a vector field X and a function fC x (M) give rise to a new function X (f) ∈ C x (M) defined by

$$X(f)(x) = {X_x}(f).x \in M$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BEARDON, A.F., The Geometry of Discrete Groups. Springer-Verlag, BerlinHeidelberg-New York, 1983.

    Book  MATH  Google Scholar 

  • BERGER, M., Gauduchon. P. and Mazet, E. Le Spectre d’une Variété Riemannienne, Lecture Notes in Math., Vol. 194. Springer-Verlag, Berlin, 1971.

    Google Scholar 

  • BERGER, M., Geometry II. Universitext, Springer-Verlag, Berlin-Heidelberg, 1987. BESSE, A.L., Einstein Manifolds, Springer-Verlag. Berlin, 1987.

    Google Scholar 

  • BISHOP, R. and Crittenden, R. Geometry of Manifolds, Academic Press, New York, 1964.

    MATH  Google Scholar 

  • BOOTHBY, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Second Edition, Academic Press. Inc. Boston. 1986.

    MATH  Google Scholar 

  • BOURBAKI, N., Variétés Différentielles et Analytiques. Fascicule de Résultats/Paragraphes 1 à 7. Hermann, Paris. 1967.

    MATH  Google Scholar 

  • BUSER, P., Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, Vol. 106, Birkhäuser, Boston, 1992.

    Google Scholar 

  • CHAVEL, I., Riemannian Geometry - A Modern Introduction, Cambridge Tracts in Mathematics, Vol. 108. Cambridge University Press, 1993.

    Google Scholar 

  • CHEN, B.-Y. and Vanhecke. L. Differential geometry of geodesic spheres, J. Reine Angew. Math. vol. 325 (1981), 28–67.

    MathSciNet  MATH  Google Scholar 

  • CRAIOVEANU, M. and Puta, M., Introducere in Geometria Spectra10, Editura Academiei Române, Bucuresti, 1988.

    Google Scholar 

  • DEO, S. and Varadarajan. K., Discrete groups and discontinuous actions, Rocky Mountain Journal of Mathematics. 27 (1997), 559–583.

    Article  MathSciNet  MATH  Google Scholar 

  • GALLOT, S., Hulin, D. and Lafontaine. J. Riemannian Geometry, Second Edition, Universitext, Springer-Verlag, Berlin. 1993.

    Google Scholar 

  • GHEORGHIEV, GH. and Oproiu, V., Varietciti Finit si Infinis Dimensionale, Vol. II, Editura Academiei Romäne, Bucuresti. 1979.

    Google Scholar 

  • GORDON, C.S. and Wilson, E.N., The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986), No. 2, 253–271.

    MathSciNet  MATH  Google Scholar 

  • GORDON, C.S. and Wilson, E.N., Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988). 245–269.

    Article  MathSciNet  MATH  Google Scholar 

  • LEKKERKERKER, C.G. Geometry of numbers. Bibliotheca Mathematica, Vol. VIII, Wolters-Noordhoff Publ. — Groningen. North-Holland Publ. Co. — Amsterdam, 1969.

    Google Scholar 

  • O’NEILL, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, Inc., 1983.

    Google Scholar 

  • PALAIS, R.S. (ed.), Seminar on the Atiyah-Singer Index Theorem, Princeton, 1965.

    Google Scholar 

  • RATCLIFFE, J.G., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  • ROE, J., Elliptic Operators, Topology and Asymptotic Methods, Pitman Research Notes in Mathematics Series 179, Longman Group UK Limited, 1988.

    Google Scholar 

  • SAKAI, T., Riemannian Geometry, Translations of Mathematical Monographs, Vol. 149, American Mathematical Society, Providence, Rhode Island. 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Craioveanu, M., Puta, M., Rassias, T.M. (2001). Introduction to Riemannian Manifolds. In: Old and New Aspects in Spectral Geometry. Mathematics and Its Applications, vol 534. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2475-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2475-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5837-9

  • Online ISBN: 978-94-017-2475-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics