Skip to main content

Thin Film of Resonant Atoms: A Simple Model of Nonlinear Optics

  • Chapter
Nonlinear Optical Waves

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 104))

  • 452 Accesses

Abstract

A thin film of resonant atoms with a thickness much less than the wavelength of incident light represents a very comprehensive model for studies of nonlinear surface waves [1,2] (see section 3.3) and nonlinear reflection of ultrashort optical pulses [3–5], which can be treated analytically. These phenomena are typical for Hamiltonian systems. Moreover, the model of a thin film of resonant atoms makes it possible to deal also with another class of nonlinear optical phenomena associated with nontrivial dynamics of open dissipative systems. The most familiar phenomena of this kind are optical bistability [6,7] and spontaneous pulsations (self-pulsations) [6,8]. The various types of coherent transients exhibiting new interesting peculiarities appear in the field of interactions of resonant light pulses with thin films [9–19]. On the other hand., thin film is a simple example of low dimensional systems attracting great attention in the last years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranovich, V.M., Rupasov, V.I., and Chernyak, V.Y.: Self-induced transparency of surface polaritons,. Pis ‘ma Zh.Eksp.Teor.Fiz. 33 (1981), 196–199 [JETP Lett. 33 (1981), 185].

    Google Scholar 

  2. Agranovich, V.M., Chernyak, V.Y., and Rupasov, V.I.: Self-induced transparency in wave guides, Opt.Commun. 37 (1981), 363–365.

    Article  ADS  Google Scholar 

  3. Rupasov, V.I.. and Yudson, V.I.: On the boundary problems of nonlinear optics of resonant media, Kvant.Elektron. 9(1982), 2179–2186 [Sov.J.Quantum Electron. 12 (1982) 415–419].

    Google Scholar 

  4. Rupasov. V.I., and Yudson, V.I.: Nonlinear resonant optics of thin films: the method of inverse scattering transformation, Zh.Eksp.Teor.Fiz. 93 (1987), 494–499 [Sov.Phys. JETP 66 (1987), 282–285].

    Google Scholar 

  5. Basharov, A.M., Maimistov, A.I., and Manykin, E.A.: Exactly integrable models of resonant interaction of light with a thin film of three-level particles, Zh.Eksp.TeorFz. 97 (1990), 1530–1543 [Sov.Phys. JETP 70 (1990), 864–871].

    Google Scholar 

  6. Basharov, A.M.: Thin film of resonant atoms: a simple model of optical bistability and self-pulsation, Zh.Eksp.Teor.Fiz. 94 (1988), 12–18 [Sov.Phys. JETP 67 (1988), 1741–1744].

    Google Scholar 

  7. Benedict, M.G., Zaitsev, A.I., Malysheev, V.A., and Trifonov, E.D.: Resonatorless bistability by ultrashort pulse transmission through thin layer with resonant two-level centers, Opt. Spektrosk. 68 (1990), 812–817 [Opt.Spectrosc. 68 (1990), 473–476].

    Google Scholar 

  8. Logvin, Yu.A., Samson, A.M., and Turovets, S.I.: Instabilities and chaos in bistable thin film of two-level atoms, Kvant.Elektron.17 (1990), 1521–1524 [Sov.J.Quantum Electron. 20 (1982) 1425–1427].

    Google Scholar 

  9. Samson, A.M., Logvin, Yu.A., and Turovets, S.I.: Interaction of short light Dulses with inverted thin film of resonant atoms, Kvant.Elektron. 17 (1990), 1223–1226.

    Google Scholar 

  10. Lambruschini, C.L.P.: Cooperative effects in a physically adsorbed monolayer of two-level atoms, J.Mod.Opt. 37 (1990), 1175–1183.

    Article  ADS  Google Scholar 

  11. Benedict, M.G., Malysheev, V.A., Trifonov. E.D., and Zaitsev, A.I.: Reflection and transmision of ultrashort light pulses through a thin resonant medium: local-field effects, Phys. Rev. A 43 (1991), 3845–3853.

    Article  ADS  Google Scholar 

  12. Samson, A.M., Logvin, Yu.A., and Turovets, S.I.: Induced superradiance in a thin film of two-level atoms, Opt.Commun. 78, (1990), 208–212.

    Article  ADS  Google Scholar 

  13. Kaup, D.J., and Malomed, B.A.: The resonant three-wave interaction in the an inhomogeneous medium, Phys.Lett. A 169 (1992), 335–340.

    Article  MathSciNet  ADS  Google Scholar 

  14. Zacharov, S.M., and Manykin, E.A.: Spatially synchronism of photon echo in thin resonant layer at the boundary of two media, Opt. Spektrosk. 63 (1987), 1069–1072.

    Google Scholar 

  15. Zacharov, S.M., and Manykin, E.A.: Interaction of ultrashort light pulses with thin film of surface atoms at two-photon resonance, Zh.Eksp.Teor.Fiz. 95 (1989), 800–806.

    Google Scholar 

  16. Zakharov, S.M., and Manykin, E.A.: Nonlinear interaction of light with thin film of surface atoms, Zh.Eksp.Teor.Fiz. 105 (1994), 1053–1065.

    Google Scholar 

  17. Khadzhi, P.I., and Gaivan, S.L.: Nonlinear interaction of ultrashort light pulses with a thin semiconductor film at two-photon excitation of excitons, Kvant.Elektron. 22 (1995), 929–935.

    Google Scholar 

  18. Khadzhi, P.I., and Gaivan, S.L.: Nonlinear transmission of light by a thin semiconductor film in the exciton resonance region, Kvant.Elektron. 24(1997), 546–550 [Sov.JQuantum Electron. 27 (1997) 532–535].

    Google Scholar 

  19. Vanagas, E., and Maimistov, A.I.: The reflection of ultrashort light pulses from nonlinear boundary of two dielectric media, Opt. Spektrosk. 84 (1998), 301–306.

    Google Scholar 

  20. Ben-Aryeh, Y., Bowden, C.M., and Englund, J.C.: Intrinsic optical bistability in collections of spatially distributed two-level atoms. Phys.Rev. A 34 (1986), 3917–3926.

    ADS  Google Scholar 

  21. Basharov, A.M.: Photonics: Self-pulsation and chaos in optical systems, Engineering-Physics Institute, Moscow, 1987.

    Google Scholar 

  22. Gibbs, H.M.: Optical bistability-controlling light with light, Academic Press, New York, 1985.

    Google Scholar 

  23. Collet, P., and Eckmann, J.P.: Iterated maps on the interval as dynamical systems, Birkhauser, Boston, 1980.

    MATH  Google Scholar 

  24. Schuster, H.G.: Deterministic chaos, Physik-Verlag, Weinheim, 1984.

    MATH  Google Scholar 

  25. Carmichael, H.J.: Optical bistability and multimode instabilities, Phys.Rev.Lett. 52 (1984) 1292–1295.

    Article  MathSciNet  ADS  Google Scholar 

  26. Basharov, A.M.: Optical bistability of a thin film of resonant atoms Ma phase-sensitive thermostat, Zh.Eksp.Teor.Fiz. 108 (1995), 842-850 [Sov.Phys. JETP 81 (1995), 459–463].

    Google Scholar 

  27. Gadomsky, O.N., Krutitsky, K.V.: Near-field effect in surface optics, JOSA B 13 (1993) 1679–1691.

    Article  ADS  Google Scholar 

  28. Gadomsky, O.N., Krutitsky, K.V.: Near-field effect and spatial distribution of spontaneous photons near surface, Zh.Eksp.Teor.Fiz. 106 (1994), 936–955 [Sov.Phvs. JETP 79 (1994), 513–523].

    Google Scholar 

  29. Gadomsky, O.N., Krutitsky, K.V., and Gadomskia, LV.: The effect of near field in surface optics, Opt. Spektrosk. 84 (1998), 780–785.

    Google Scholar 

  30. Mantsyzov, B.I., Kuz’min, R.N.: Coherent interaction of light with discrete periodic resonant medium, Zh.Eksp.Teor.Fiz. 91 (1986), 65–77 [Sov.Phys. JETP 64 (1986), 37–46].

    Google Scholar 

  31. Mantsyzov, B.I.: Gap 27t-pulse with inhomogeneous broadening line and oscillating solitary wave, Phys.Rev.A 51 (1995) 4939–4947.

    Article  ADS  Google Scholar 

  32. Chen, W., and Mills, D.I,.: Gap solitons and nonlinear optical response of superlattices, Phys.Rev.Leu. 58 (1987) 160–163.

    Article  ADS  Google Scholar 

  33. Peschel, T., Peschel, U., and Lederer, F.: Bistability and symmetry breaking in distributed coupling of counterpropagating beams into nonlinear waveguides, Phys.RevA 50 (1994) 5153–5163.

    Article  ADS  Google Scholar 

  34. Logvin, Yu.A.: Nonreciprocal optical patterns due to symmetry breaking, Phys.Rev.A 57 (1998) 12191222.

    Google Scholar 

  35. Neset, A, and Sajeev, J.: Optical solitary waves in two-and three-dimensional nonlinear photonic band gap structures, Phys.Rev. E 57 (1998), 2287–2320.

    Article  Google Scholar 

  36. Conti, C., Trillo, S., and Assanto, G.: Optical gap solitons via second-harmonic generation: exact solitary solutions, Phys.Rev. E 57 (1998), R1251 - R1255.

    Article  ADS  Google Scholar 

  37. Zakharov, S.M., and Goriachev, V.A.: Dynamic of ultrashort pulse propagation through thin film’s resonator structure, Kvant.Elektron. 24 (1997), 193–208.

    Google Scholar 

  38. Logvin, Yu.A., Samson, A.M.: Light transmission through a system of two bistable thin films, Zh.Eksp.Teor.Fiz. 102 (1992), 472-481 [Sov.Phys. JETP 75 (1990), 250–257].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maimistov, A.I., Basharov, A.M. (1999). Thin Film of Resonant Atoms: A Simple Model of Nonlinear Optics. In: Nonlinear Optical Waves. Fundamental Theories of Physics, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2448-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2448-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5238-4

  • Online ISBN: 978-94-017-2448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics