Skip to main content

Self-Induced Transparency

  • Chapter
Nonlinear Optical Waves

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 104))

  • 470 Accesses

Abstract

A self-induced transparency (SIT) phenomenon consists in the propagation of a powerful ultrashort pulse (USP) of light through a resonance medium without the distortion and energy loss of this pulse [1–4]. This phenomenon is characterised by the continuous absorption and re-emission of electromagnetic radiation by resonant atoms of medium in such a manner that steady-state optical pulse propagates. In the ideal case the energy dissipation of the USP is invisible, and the state of the resonant medium is not varying. It means that the medium is transparent. The group velocity of a such steady-state pulse, called 2π-pulse or soliton of SIT, is less than the phase speed of light in a medium. The group velocity depends on a 2π-pulse duration: the shorter is the duration, the higher is its speed [2–5]. When two pulses of the different velocities spread in the medium, the second pulse may overtake the first and a collision will take place. After the collision, the solitons keep their shape and velocity (but in general all other parameters of solitons may alter). This fundamental property of the SIT solitons has been studied many times both theoretically and experimentally [3,6,7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCall, S.L., and Hahn, E.L.: Self-induced transparency by pulsed coherent light, Phys.Rev.Letts. 18 (1967), 908–911.

    Article  ADS  Google Scholar 

  2. McCall, S.L., and Hahn, E.L.: Self-induced transparency, Phys.Rev. 183 (1969), 457–485.

    Article  ADS  Google Scholar 

  3. Allen, L.. and Eberly, J.H.: Optical Resonance and Two-Level Atoms, Wiley, New York, 1975.

    Google Scholar 

  4. Slusher, R.E.: Self-induced transparency, Progr.Optics, 12 (1974), 53–100.

    Article  Google Scholar 

  5. Courtens, E.: Giant Faradey rotations in self-induced transparency. Phys.Rev.Letts. 21 (1968), 3–5.

    Article  ADS  Google Scholar 

  6. Lamb, G.L., Jr.: Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod Phys. 43 (1971), 99–124.

    Article  MathSciNet  ADS  Google Scholar 

  7. Eilbeck, J.L., Gibbon, J.D., Caudrey, P.J., and Bullough, R.K.,: Solitons in nonlinear optics. I. A more accurate description of the 27r-pulse in self-induced transparency, JPhys. A, 6, (1973), 1337–1347.

    ADS  Google Scholar 

  8. Lamb, G.L., Jr.: Coherent optical pulse propagation as inverse problem, Phys.Rev. A 9, (1974), 422–430.

    ADS  Google Scholar 

  9. Gibbon, J.D., Caudrey, P.J., Bullough, R.K., and Eilbeck, J.L.: An N-soliton solution of a nonlinear optics equation derived by a general inverse method, Letts.Nuovo Cimento 8, (1973), 775–779.

    Article  Google Scholar 

  10. Takhtajan, L.A.: Exact theory of propagation of ultrashort optical pulses in two-level media, Zh.Eksp.Teor.Fiz. 66 (1974), 476–489 [Sov.Phys. JETP 39 (1974), 228–238

    Google Scholar 

  11. Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H.: Coherent pulse propagation, a dispersive, irreversible phenomenon, J.Math.Phys. 15 (1974), 1852–2858.

    Article  ADS  Google Scholar 

  12. Kaup, D.J.: Coherent pulse propagation: A comparison of the complete solution with the McCall-Hahn theory and others, Phys.Rev. A 16, (1965), 240–243.

    Google Scholar 

  13. Haus H.A.: Physical interpretation of inverse scattering formalism applied to self-induced transparency, Rev.Mod.Phys. 51, (1979), 331–339.

    Article  ADS  Google Scholar 

  14. Gibbon, J.D., and Eilbeck, J.L.: A possible N solitons solution for nonlinear optics equation, JPhys. A 5, (1972),.L122–L124.

    Google Scholar 

  15. Caudrey, P.J., Gibbon, J.D., Eilbeck, J.L., and Bullough, R.K.: Exact multisolitons solution of the self-induced transparency and Sine-Gordon equations, Phys. Rev. Letts. 30, (1973), 237–238.

    Article  ADS  Google Scholar 

  16. Caudrey, P.J., Eilbeck, J.L., Gibbon, J.D., and Bullough, R.K.: Exact multisolitons solution of the inhomogeneously broadened self-induced transparency equations, J.Phys. A, 6 (1973), L53 - L56.

    ADS  Google Scholar 

  17. Rhodes, C.K., Szoke, A., and Javan, A.: The influence of level degeneracy on the self-induced transparency effect, Phys.Rev.Letts. 21 (1968), 1151–1155.

    Article  ADS  Google Scholar 

  18. Lu, E.Y.C., and Wood L.E.: Single-peaked self-induced transparency pulses in a degenerate resonant medium, Phys.Letts. A, 45 (1973), 373–374.

    Article  ADS  Google Scholar 

  19. Lu, E.Y.C., and Wood L.E.: Analytic description of distortionless propagation in a resonant absorbing medium with overlapping Q(j)-transitions, Opt.Commun. 10, (1974), 169–171.

    Article  ADS  Google Scholar 

  20. Duckworth, S., Bullough, R.K., Caudrey, P.J., and Gibbon, J.D.: Unusualy soliton behavior in the self-induced transparency of Q(2) vibration-rotation transitions, Phys.Letts. A, 57, (1976), 19–22.

    Article  Google Scholar 

  21. Gundersen, R.M.: Self-induced transparency with level degeneracy, JPhys. A, 23 (1990) 4237–4247.

    ADS  MATH  Google Scholar 

  22. Konopnicki, M.J., Drummond, P.D., and Eberly J.H.: Simultons: theory of simultaneous propagation of short different-wavelength optical pulses, Bull.Amer. Phys Soc. 25 (1980), 1124; Appl.Phys. B 28 (1982), 103.

    Article  Google Scholar 

  23. Konopnicki, M.J., Drummond,dP.D., and Eberly J.H.: Theory of lossless propadation of simultaneous ddfferent-wavelength optidal pulses, Opt.Commun. 3d (1981), 313–316.

    Article  ADS  Google Scholar 

  24. Konopnicki, M.J., and Ebedly J.H.: Simultaneous propagation of short different-wavelength optical pulses, Phys.Rev. A 24 (1981), 2567–2583.

    ADS  Google Scholar 

  25. Kujawski, A.: Soliton properties of optical simultons, Opt.Commun. 43 (1982), 375–377.

    Article  ADS  Google Scholar 

  26. Bol’shov, L.A., Likhanskii, V.V., and Persiancev, M.I.: On the theory of coherent interaction of light pulse with a resonant multilevel media, Zh.Eksp.Teor.Fiz. 84 (1983), 903–911 [Sov.Phys. JETP 57 (1983), 524]

    Google Scholar 

  27. Maimistov, A.I.: A rigorous theory of self-induced trancparency under double resonance in a three-level medium, Kvantovaya Electron., Moskva, 11 (1984), 567–577 [Sov.J. Quantum Electron. 14 (1984), 385

    Article  ADS  Google Scholar 

  28. Bol’shov, L.A., and Likhanskii, V.V.: Coherent interaction between emission pulses and resonant multilevel media (Review article), Kvantovaya Electron., Moskva,12 (1985), 1339–1364. [Sov.]. Quantum Electron. 12 (1985), 889].

    Google Scholar 

  29. Maimistov, A.I.: New examples of exactly solvable problems in nonlinear optics. Opt.Spektrosk. 57 (1984), 564–566. [Opt.Spectrosc.(USSR) 57, (1984) 340–341.]

    Google Scholar 

  30. Basharov,A.M., and Maimistov, A.I.: On self-induced transparency under condition of degeneration of resonant energy levels, Zh.Eksp.Teor.Fiz. 87 (1984), 1594–1605 [Sov.Phys. JETP 60 (1984), 913]

    Google Scholar 

  31. Basharov, A.M., Maimistov, A.I., and Sklyarov Yu.M.: Self-induced transparency on the transition 11 is a exactly solvable polarization model of nonlinear optics, Opt.Spektrosk. 63 (1987), 707–709 [Opt.Spectrosc.(USSR) 62 (1987), 418]

    Google Scholar 

  32. Basharov, A.M., and Maimistov, A.I.: Polarized solitons in three-level media, Zh.Eksp.Teor.Fiz. 94 (1988), 61–75 [Sov.Phys. JETP 67 (1988), 2426–2433]

    Google Scholar 

  33. Chemyak, V.Ya., and Rupasov, V.I.: Polarization effects in self-induced transparency theory, Phys.Letts. A. 108 (1985), 434–436.

    Article  ADS  Google Scholar 

  34. Roy Chowdhury,A., and M.De, M.: Riemann-Hilbert problem with order poles for self-induced transparency with degenerate energy levels, Austr.J.Phys. 41 (1988), 735–741.

    Google Scholar 

  35. Roy Chowdhury,A., and M.De, M.: On a Riemann-Hilbert approach to degenerate SIT: Soliton solutions with time-dependent velocity, Inverse Probl. 4 (1988), 901–911.

    Google Scholar 

  36. Steudel, H.: N-soliton solutions to degenerate self-induced transparency, J. Mod. Opt. 35 (1988), 693–702

    Article  ADS  Google Scholar 

  37. Basharov, A.M., and Maimistov, A.I.: Interaction of polarized waves in three-level medium, Opt.Spektrosk. 68, (1990), 1112–1117.

    Google Scholar 

  38. Agranovich, V.M., Chemyak, V.Y., and Rupasov, V.I.: Self-induced transparency in wave guides, Opt.Commun. 37 (1981), 363–365.

    Article  ADS  Google Scholar 

  39. Agranovich, V.M., Rupasov, V.I., and Chemyak, V.Y.,: Theory of self-induced transparency of the surface and guided wave solutions. Fiz.Tverd.Tela (Leningrad) 24 (1982), 2992–2999 [Sov. Phys.Solid State 24 (1982), 1693 ]

    Google Scholar 

  40. Ponath, H.E., and Schubert, M.: Optical soliton-like surface phenomena, Opt.Acta 30 (1983), 1139–1149.

    Article  ADS  Google Scholar 

  41. Basharov, A.M., Maimistov, A.I., and Manykin E.A.: Exactly integrable models of resonance interaction of light with a thin film of three-particle levels, Zh.Eksp.Teor. Fiz. 97 (1990), 1530–1543 [Sov.Phys. JETP 70 (1990), 864–871]

    Google Scholar 

  42. Belenov, E.M., and Poluektov, I.A.: Coherent effects under ultrashort light pulse in medium under condition of two-photon resonance absorption, Zh.Eksp.Teor.Fiz. 56 (1969), 1407–1411 [Sov.Phys. JETP 29 (1969), 754]

    Google Scholar 

  43. Takatsuji, M.: Propagation of a Light Pulse in a Two-Photon Resonant Medium. Phys.Rev. A 4 (1971), 808–810.

    Article  ADS  Google Scholar 

  44. Takatsuji, M.: Theory of Coherent Two-Photon Resonance, Phys.Rev. A 11 (1975), 619–624.

    ADS  Google Scholar 

  45. Tan-no, N., and Higuchi, Y.: Solitary Wave Solutions in Coherent Two-Photon Pulse Propagation, Phys.Rev. A16 (1977), 2181–2183 (1977)

    ADS  Google Scholar 

  46. Tan-no, N., Shirahata, T., and Yokoto, K.: Coherent Transient Effect in Raman Pulse Propagation, Phys.Rev. A 12 (1975), 159–168.

    Article  ADS  Google Scholar 

  47. Hanamura, E.: Self-Indused Transparency Due to Two-Photon Transition and Area Theorem, JPhys.Soc.Japan 37 (1974), 1598–1605.

    Article  ADS  Google Scholar 

  48. Steudel, H.: Solitons in stimulated Raman scattering, Ann.Phys.(DDR) 34 (1977), 188–202.

    Article  ADS  Google Scholar 

  49. Poluectov, I.A., Popov, Yu.M., and Roitberg V.S.: Coherent effects under propagation of ultrashort light pulses in medium with resonant two-photon absorption, Pis’ma Zh. Eksp. Teor.Fiz. 18 (1973) 638–641 [Sov.Phys. - JETP Lett. 18 (1973), 373–376].

    Google Scholar 

  50. Poluectov, I.A., Popov, Yu.M., and Roitberg V.S.: Coherent propagation of powerful light pulses through medium under condition of two-photon interaction, Pis ‘ma Zh. Eksp. Teor.Fiz. 20 (1974) 533–537 [Sov.Phys. - JETP Lett. 20 (1974), 243–246].

    Google Scholar 

  51. Poluectov, I.A., Popov, Yu.M., and Roitberg V.S.: Coherent effects appearing in propagation of ultrashort light pulse in medium under condition of two-photon resonance, Kvantovaya Electron., Moskva,2 (1975), 1147–1152 [Sov.J. Quantum Electron. 5 (1975), 620]

    Google Scholar 

  52. Dutta, N.: Theory of Coherent Two-Photon Absorption, Phys.Lett. A69 (1978), 21–23.

    Article  Google Scholar 

  53. Steudel, H.: Solitons in stimulated Raman scattering and resonant two-photon propagation, Physica D 6, (1983), 155–178.

    MathSciNet  MATH  Google Scholar 

  54. Kaup, D.J.: The method of solution for stimulated Raman scattering and two-photon propagation, Physica D 6, (1983), 143–154.

    MathSciNet  Google Scholar 

  55. Meinel, R.: Backlund transformation and N-soliton solutions for stimulated. Raman scattering and resonant two-photon propagation, Opt.Commun. 49, (1984), 224–228.

    Article  ADS  Google Scholar 

  56. Maimistov, A.I.: Gauge relation between self-induced transparency theory and principal chiral models, Phys.Letts. A144 (1990), 11–14.

    Article  ADS  Google Scholar 

  57. Poluectov, I.A., Popov, Yu.M., and Roitberg, V.S.: Effect of self-induced-transparency, Usp. Fiz. Nauk 114 (1974), 97–131.

    Article  Google Scholar 

  58. Bullough, R.K., Jack, P.M., Kitchenside, P.W., and Saudders, R.: Solitons in laser physics, Phys.Scr. 20 (1979), 364–381.

    Article  ADS  MATH  Google Scholar 

  59. Maimistov, A.I., Basharov, A.M., Elyutin, S.O., and Sklyarov, Yu.M.: Present state of self-induced transparency theory, Phys.Rept, C 191 (1990), 1–108.

    Article  ADS  Google Scholar 

  60. Eilbeck, J.C., and Bullough, R.K.: The method of characteristics in the theory of resonant or nonresonant nonlinear optics, JPhys. A 5 (1972), 820–829.

    ADS  Google Scholar 

  61. Arecchi, F.T., DeGiorgio, V., and Someda, C.G.: Self-induced light propagation in a resonant medium, Phys.Lett. A27 (1968), 588–589.

    Article  Google Scholar 

  62. Eberly, J.H.: Optical Pulse and Pulse-Train Propagation in a Resonant Medium. Phys.Rev.Lett. 22 (1969), 760–762.

    Article  ADS  Google Scholar 

  63. Crisp, M.D.: Distortionless propagation of light through an optical medium, Phys.Rev.Lett. 22 (1969), 820–823.

    Article  ADS  Google Scholar 

  64. Byrd, P.F., and Friedman M D: Handbook of elliptic integrals for engineers and physicists, Springer, Berlin, Gottinberg, Heidelberg, 1954.

    Google Scholar 

  65. Bullough, R.K., and Ahmad, F.: Exact solutions of the self-induced transparency equations, Phys.Rev.Lett. 27 (1971), 330–333.

    Article  ADS  Google Scholar 

  66. Arecchi, F.T., and Courtens, E.: Cooperative phenomena in resonant electromagnetic propagation, Phys.Rev. A 2 (1970), 1730-

    Google Scholar 

  67. Dicke, R.H.: Coherence in spontaneous radiation processes, Phys.Rev. 93 (1954), 99–110.

    Article  ADS  MATH  Google Scholar 

  68. Rehler, N.E., Eberly, J.H.: Superradiance, Phys.Rev. A3 (1971), 1735–1751.

    Article  MathSciNet  ADS  Google Scholar 

  69. Chen, H.-H., Relation between Bäcklund transformations and inverse scattering problems, in R.M.Miura (ed.), Backlund Transformations, the Inverse Scattering Method, Solitons and Their Applications, (Lect.Notes in Math. 515 ), Springer-Verlag, Berlin, 1976, pp. 241–252

    Google Scholar 

  70. Barnard, T.W.: 2N7t ultrashort light pulses, Phys.Rev. A7 (1973), 373–376.

    Google Scholar 

  71. Bak, P.: Solitons in incommensurate systems, in A.R.Bishop, T.Schneider (eds.), Solitons and Condensed Matter Physics, Springer, Berlin, Heidelberg, New York, 1978, pp. 216–233.

    Chapter  Google Scholar 

  72. Rice, M.J.: Charge density wave systems: the 41-particle model, in A.R.Bishop, T.Schneider (eds.). Solitons and Condensed Matter Physics, Springer, Berlin, Heidelberg, New York, 1978, pp. 246–253.

    Chapter  Google Scholar 

  73. Kitchenside, P.W., Bullough, R.K., and Caudrey, P.J.: Creation of spin wave in 3He-B. in A.R.Bishop, T.Schneider (eds.), Solitons and Condensed Mauer Physics, Springer, Berlin, Heidelberg, New York, 1978, pp. 291–296.

    Chapter  Google Scholar 

  74. Gibbon J.: The interaction of spin waves in liquid 3 He in several dimensions, in A.R.Bishop, T.Schneider (eds.), Solitons and Condensed Matter Physics, Springer, Berlin, Heidelberg, New York, 1978, pp. 297–300.

    Chapter  Google Scholar 

  75. Rozhkov, S.S.: Dynamics of order parameter in superfluid phases of helium-3, Usp.Fiz.Nauk (USSR) 142 (1986), 325–346.

    Article  Google Scholar 

  76. Iwabuchi, Ch.: Commensurate-incommensurate phase transition in double sine-Gordon system, Progr.Theor.Phys. 70 (1983), 941–953.

    Article  ADS  Google Scholar 

  77. Hudak, O.: Double Sine-Gordon equation, A stable 271 -kink and commensurate-incommensurate phase transitions: Phys.Lett. A 82 (1981), 95–96.

    Article  MathSciNet  Google Scholar 

  78. Burdick, S., El-Batanouny, M.. and Willis, C.R.: Nonlinear internal dynamics of the double-sineGordon soliton, Phys.Rev. B 34 (1986), 6575–6578.

    Article  ADS  Google Scholar 

  79. Bullough, R.K., Caudrey, P.J., and Gibbs H.M.: The double-sine-Gordon equations: a physically applicable system of equations, in R.K. Bullough, P.J.Caudrey (eds.), Solitons, Springer, Berlin, Heidelberg, New York, 1980, pp. 107–147.

    Chapter  Google Scholar 

  80. Dodd, R.K., Bullough, R.K., and Duckworth, S.: Multisoliton solutions of nonlinear dispersive wave equations not soluble by the inverse method, JPhys. A5 (1975), L64 - L68.

    Article  Google Scholar 

  81. Hudak, O.: The double sine-Gordon equation: On the nature of internal oscillation of the 271 -kink, Phys.Lett. A 86 (1981), 208–212.

    Article  MathSciNet  Google Scholar 

  82. van der Merwe, P. du T.: Phase-locked solutions, Lett Nouvo Cimento 25 (1979), 93–96.

    Article  Google Scholar 

  83. Duckworth, S., Bullough, R.K., Caudrey, P.J., and Gibbon J.D.: Unusualy soliton behavior in the self-induced transparency of Q(2) vibration-rotation transitions, Phys.Lett. A 57 (1976), 19–22.

    Article  Google Scholar 

  84. Salamo, G.J., Gibbs, H.M., and Churchill, G.G.: Effects of degeneracy on self-induced transparency, Phys.Rev.Lett. 33 (1974), 273–276

    Article  ADS  Google Scholar 

  85. Gibbs, H.M., McCall, S.L., and Salamo, G.J.: Near-ideal self-induced-transparency breakup in highly degenerated systems, Phys.Rev. A 12 (1975), 1032–1035.

    Google Scholar 

  86. Xu Gan, King, T.A., and Bannister, J.J.: Self-induced transparency on degenerate magnetic dipole transitions. Phys.Rev. A 29 (1984), 3455–3457.

    Google Scholar 

  87. Xu Gan, and King, T.A.: Coherent pulse propagation and self-induced transparency on degenerate transitions in atomic iodine, Phys.Rev. A 30 (1984), 354–364.

    Google Scholar 

  88. Xu Gan, King, T.A., and Bannister, J.J.: Pulse reshaping in coherent interaction with a resonant absorber and application to measurement of homogeneous relaxation time. Opt.Acta 31 (1984), 487–495.

    Article  ADS  Google Scholar 

  89. Xu Gan, King, T.A., and Bannister, J.J.: Coherent pulse propagation on a Q-branch transition in atomic iodine vapour, Opt.Aeta 32 (1985), 7–15.

    ADS  Google Scholar 

  90. Bannister, J.J., Baker, H.J., King, T.A., and McNaught, W.G.: Self-induced transparency and resonant self-focusing in atomic iodine vapor, Phys.Rev.Lett. 44 (1980), 1062–1065.

    Article  ADS  Google Scholar 

  91. Drummond, P.D.: Formation and stability of vee simultons, Opt.Commun. 49 (1984), 219–223.

    Article  ADS  Google Scholar 

  92. Maimistov, A.I., and Sklyarov Yu.M.: On coherent interaction light pulses with three-level medium, Opt..Spektrosk. 59(1985), 760–763 [Opt.Spectrosc. (USSR) 59 (1985), 459]

    Google Scholar 

  93. Bol’shov L.A., and Napartovich, A.P.: Coherent interaction of light pulses with three-level systems, Zh.Eksp.Teor.Fiz. 68 (1975), 1763–1767

    Google Scholar 

  94. Zabolotskii, A.A.: Resonance and parametric interaction of light in a nonlinear medium, Phys. Lett. A 113 (1986), 459–462.

    Article  MathSciNet  Google Scholar 

  95. Hioe, F.T.: Exact solitary-wave solution of short different-wavelength optical pulses in many-level atomic absorbers, Phys.Rev. A 26 (1982), 1466–1472.

    Article  MathSciNet  ADS  Google Scholar 

  96. Drummond, P.D., and Eberly J.H.: Four-dimensional simulation of multiple-laser pulse propagation, Bull.Amer.Phys.Soc., 20 (1980), 11–24.

    Google Scholar 

  97. Chelkowski, S., and Bandrauk, A.D.: Coherent propagation of intense ultrashort laser pulses in a molecular multilevel medium. JChem.Phys. 89 (1988), 3618–3628.

    ADS  Google Scholar 

  98. Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H.: Nonlinear evolution equations of physical significance, Phys.Rev. Letts. 31, (1973), 125–127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H.: The inverse scattering transform–Fourier analysis for nonlinear problems, Stud.Appl.Math. 53 (1974) 249–315.

    MathSciNet  Google Scholar 

  100. Zakharov, V.E., Manakov, S.V., Novikov, S.P., and Pitaevskii, L.P.: Theory of Solitons: The Inverse Problem Method [in Russian], Nauka, Moscow, 1980. Theory of Solitons: The Inverse Scattering Method, Plenum, New York, 1984.

    Google Scholar 

  101. Ablowitz, M.J., and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Book  MATH  Google Scholar 

  102. Ablowitz, M.J., and Huberman, R.: Resonantly coupled nonlinear evolution equations, JMath.Phys. 16 (1975), 2301–2305.

    Article  ADS  Google Scholar 

  103. Huberman, R.: Note on generating nonlinear evolution equations, SIAM Appl.Math. 31 (1976), 47–50.

    Article  Google Scholar 

  104. Caudrey, P.J.: The inverse problem for a general spectral equation, Physica D 6 (1982), 51–66.

    MathSciNet  MATH  Google Scholar 

  105. Gerdjikov, V.S., and Kulish, P.P.: The generating operator for the linear system, Physica D 3 (1981), 549–564.

    MathSciNet  MATH  Google Scholar 

  106. Fordy, A.P., and Kulish, P.P.: Nonlinear Schrodinger equations and simple Lie algebra’s, Commun.Math.Phys. 89 (1983), 427–443.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  107. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Zh.Eksp.Teor.Fiz. 65 (1973), 505–516 [Sov.Phys. JETP 38 (1974), 248]

    Google Scholar 

  108. Wahlquist, H.D., and Estabrook, F.B.: Prolongation structures and nonlinear evolution equations, JMath.Phys. 16 (1975), 1–7.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  109. Wahlquist, H.D., and Estabrook, F.B.: Prolongation structures and nonlinear evolution equations, JMath.Phys. 17 (1976), 1293–1297.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. Kaup, D.J., and Malomed, B.A.: Soliton trapping and daughter waves in the Manakov model, Phys.Rev. A 48 (1993), 599–604.

    Article  MathSciNet  ADS  Google Scholar 

  111. Steudel, H.: N-Soliton solutions to degenerate self-induced transparency, J.Modern Opt. 35 (1988), 693–702.

    Article  ADS  Google Scholar 

  112. Zakharov, V.E., and Schabat, A.B.: The exact theory of two-dimensional self-focussing and one-dimensional self-modulating of waves in nonlinear medium, Zh.Eksp.Teor.Fiz. 61 (1971), 118–134 [Sov.Phys. JETP 34 (1972), 62–69].

    Google Scholar 

  113. Tratnik, M.V., Sipe J.E.: Polarization solitons, Phys.Rev.Lett. 58 (1987), 1104–1107.

    Article  MathSciNet  ADS  Google Scholar 

  114. Introduction to Integrated Optics,M.K.Barnosky, (ed.), Plenum, New York, 1974.

    Google Scholar 

  115. Elyutin, S.O., Maimistov, A.I., and Manykin E.A.: On propagation of coherent optical pulses under two-photon resonance condition, Opt.Spektrosk 50 (1981), 354–361.

    Google Scholar 

  116. McLaughlin, D.W., and Corones, J.: Semiclassical radiation theory and the inverse method, Phys.Rev. A10 (1974), 2051–2062.

    Article  ADS  Google Scholar 

  117. Kaup D.J.: The Estabrook-Wahlquist method with examples of application, Physica D 1 (1980), 391–411.

    MathSciNet  MATH  Google Scholar 

  118. Dodd, R., and Fordy, A.: The prolongation structures of quasi-polynomial flows, Proc.Roy.Soc.(London) A385 (1983), 389–429

    Article  MathSciNet  ADS  MATH  Google Scholar 

  119. Maimistov, A.1., and Manykin, E.A.: Prolongation structure for the reduced Maxwell-Bloch equations describing the two-photon self-induced transparency, Phys.Lett. A95 (1983), 216–218.

    Google Scholar 

  120. Zakharov, V.E., and Takhtajan, L.A.: Equivalence of nonlinear Schrodinger equation and equation of Heisenberg ferromagnetic, Tear. Mat. Fiz. 38 (1979), 26–35.

    Google Scholar 

  121. Takhtajan, L..A., and Faddeev L.D.: Hamiltonian approach to theory ofsolitons, Nauka, Moscow, 1986.

    Google Scholar 

  122. Kundu, A.: Gauge equivalence of s-models with non-compact Grassmannian manifolds, JPhys. A19 (1986), 1303–1313.

    MathSciNet  ADS  MATH  Google Scholar 

  123. Kundu, A.: Gauge unification of integrable nonlinear systems, in Sol1tonS.IntrOdldC[ion and Application, Springer- Verlag, Berlin, 1989, p. 86–104.

    Google Scholar 

  124. Orfanidis, S.J.: 6 -models of nonlinear evolution equations, Phys.Rev. D 21 (1980), 1513–1522.

    Google Scholar 

  125. Pohlmayer, K.: Integrable hamiltonian systems and interactions through quadratic constraints, Cornmun.Math.Phys. 46 (1976), 207–221.

    Article  ADS  Google Scholar 

  126. Perelomov, A.M.: Chiral models: geometrical aspects, Phys.Rept. C 146 (1987), 135–213.

    Article  MathSciNet  ADS  Google Scholar 

  127. Dubrovin, B.A., Novikov S.P., and Fomenko A.T.: Modern geometry, Nauka, Moscow, 1979, p. 740–750

    Google Scholar 

  128. Steudel, H.: Integrable theories of nonlinearly coupled Klein-Gordon fields, Phys.Letts. A109 (1985), 85–86.

    Article  MathSciNet  ADS  Google Scholar 

  129. Park Q-H., and Shin, H.J.: Field theory for coherent optical pulse propagation, SNUTP 97–110 (1997) August, pp.1–43.

    Google Scholar 

  130. Park Q-H.. and Shin, H.J.: Field theory for coherent optical pulse propagation, Phys.Rev. A57 (1998), 4621–4643.

    Article  MathSciNet  ADS  Google Scholar 

  131. Aiyer, R.N.: Hamiltonian and recursion operator for the Reduced Maxwell-Bloch Equations, JPhys. A16 (1983), 1809–1811.

    MathSciNet  ADS  MATH  Google Scholar 

  132. Maimistov, A.I., and Elyutin. S.O.: Hamiltonian formulation of self-induced transparency theory without slowly varying envelope approximation, Chaos, Solitons Fractals 8 (1997), 369–376.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  133. Ablowitz, M.J., Ramani, A., and Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type.l1., J.Math.Phvs. 21 (1980), 1006–1015.

    Google Scholar 

  134. Ablowitz, M.J., Ramani, A., and Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type. I, JMath.Phys. 21 (1980), 715–721.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  135. Ablowitz, M.J.: Remarks on nonlinear evolution equations and ordinary differential equations of Painleve type, Physica D3 (1981), 129–141.

    MATH  Google Scholar 

  136. Grauel, A.: The Painleve’ test, Backlund transformation and solutions of the Reduced Maxwell-Bloch equations, JPhys. A 19 (1986), 479–484.

    MathSciNet  ADS  MATH  Google Scholar 

  137. Goldstein, P.P.: Testing the Painleve’ property of Maxwell-Bloch and Reduuced Maxwell-Bloch equations, Phys.Lett. A 121 (1987), 11–14

    Article  MathSciNet  Google Scholar 

  138. Sakovich, S.Yu: Painleve analysis and Backlund transformations of Doctorov-Vlasov equations, JPhys. A27 (1994), L33 - L38.

    MathSciNet  ADS  Google Scholar 

  139. Porsezian, K., Nakkeeran, K.: Optical soliton propagation in a coupled system of the non-linear Schrödinger equation and the Maxwell-Bloch equations, JModern Opt. 42 (1995), 1953–1958.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  140. Nakkeeran, K., Porsezian, K.: Solitons in an Erbium-doped non-linear fibre medium with stimulated inelastic scattering, JPhys. A28 (1995), 3817–3823.

    MathSciNet  ADS  MATH  Google Scholar 

  141. Leon, J.J.P.: Discontinuous soliton-like solution to the self-induced transparency equations, Phys.Lett. A131 (1988), 79–84.

    Article  MathSciNet  Google Scholar 

  142. Manakov, S.V.: Propagation of the ultrashort optical pulse in a two-level laser amplifier, Zh.Eksp.Teor.Fi:. 83 (1982), 68–83.

    ADS  Google Scholar 

  143. Gabitov I.R., Zakharov V.E., and Mikhailov A.V.: Maxwell-Bloch equation and inverse scattering method, TeorMat.Fiz. 63 (1985), 11–31.

    MathSciNet  Google Scholar 

  144. Manakov, S.V., and Novokshenov V.Yu.: Complete asymptotic representation of electromagnetic pulse in a long two-level amplifier, Teor.Mat.Fiz. 69 (1986), 40–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maimistov, A.I., Basharov, A.M. (1999). Self-Induced Transparency. In: Nonlinear Optical Waves. Fundamental Theories of Physics, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2448-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2448-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5238-4

  • Online ISBN: 978-94-017-2448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics