Skip to main content

Finite element analysis of void growth in elastic-plastic materials

  • Chapter
Non-Linear Fracture

Abstract

Three-dimensional finite element computations have been carried out for the growth of initially spherical voids in periodic cubic arrays and for initially spherical voids ahead of a blunting mode I plane strain crack tip. The numerical method is based on finite strain theory and the computations are three-dimensional. The void cubic arrays are subjected to macroscopically uniform fields of uniaxial tension, pure shear and high triaxial stress. The macroscopic stress—strain behavior and the change in void volume were obtained for two initial void volume fractions. The calculations show that void shape, void interaction and loss of load carrying capacity depend strongly on the triaxiality of the stress field. The results of the finite element computation were compared with several dilatant plasticity continuum models for porous materials. None of the models agrees completely with the finite element calculations. Agreement of the finite element results with any particular constitutive model depended on the level of macroscopic strain and the triaxiality of the remote uniform stress field. For the problem of the initial spherical voids directly ahead of a blunting mode I plane strain crack tip, conditions of small scale yielding were assumed. The near tip stress and deformation fields were obtained for different void-size-to-spacing ratios for perfectly plastic materials. The calculations show that the holes spread towards the crack tip and towards each other at a faster rate than they elongate in the tensile direction. The computed void growth rates are compared with previous models for void growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F.A. McClintock, Journal of Applied Mechanics 35 (1968) 363.

    Article  ADS  Google Scholar 

  2. J.R. Rice and D.M. Tracey, Journal of the Mechanics and Physics of Solids 17 (1969) 201.

    Article  ADS  Google Scholar 

  3. B. Budiansky, J.W. Hutchinson, and S. Slutsky, Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, H.G. Hopkins and M.J. Sewell (eds.) Pergamon Press, Oxford (1982).

    Google Scholar 

  4. A. Needleman, Journal of Applied Mechanics 39 (1972) 964.

    Article  ADS  Google Scholar 

  5. V. Tvergaard, International Journal of Fracture 17 (1981) 389–407.

    Article  Google Scholar 

  6. H. Andersson, Journal of the Mechanics and Physics of Solids 25 (1977) 217.

    Article  ADS  Google Scholar 

  7. V. Tvergaard, International Journal of Fracture 18 (1982) 237–252.

    Google Scholar 

  8. J.W. Hancock, in Chemistry and Physics of Fracture, R.M. Latanision and R.H. Jones (ed.), Martinus Nijhoff, Dordrecht (1987) 148.

    Chapter  Google Scholar 

  9. A.L. Gurson, Journal of Engineering Materials and Technology 99 (1977) 2.

    Article  Google Scholar 

  10. A.L. Gurson, in Fracture 1977, Proceedings, 4th International Conference on Fracture, D.M.R. Taplin (ed.) 2, Pergamon Press, Oxford (1977) 357.

    Google Scholar 

  11. R.J. Bourcier, D.A. Koss, R.E. Smelser, and O. Richmond, Acta Metallurgica 34 (1986) 2443.

    Article  Google Scholar 

  12. O. Richmond, private communication (1987).

    Google Scholar 

  13. O. Richmond and R.E. Smelser, Alcoa Technical Center Memorandum (1985).

    Google Scholar 

  14. S.V. Harren, “The Effects of Spherical Voids in an Isotropic Strain-Hardening Elastic-Plastic Medium”, M.S. thesis, University of Illinois at Urbana-Champaign (1983).

    Google Scholar 

  15. C.L. Hom and R.M. McMeeking, Journal of Applied Mechanics 56 (1989) 309.

    Article  ADS  Google Scholar 

  16. R.M. McMeeking and J.R. Rice, International Journal of Solids and Structures 11 (1975) 601.

    Article  MATH  Google Scholar 

  17. ABAQUS, 1984, User Manual, Version 4, Hibbitt, Karlsson and Sorensen, Inc., Providence, RI (1984).

    Google Scholar 

  18. A. Needleman, Journal of the Mechanics and Physics of Solids 20 (1972) 111.

    Article  ADS  MATH  Google Scholar 

  19. J.R. Osias and J.L. Swedlow, International Journal of Solids and Structures 10 (1974) 321.

    Article  MATH  Google Scholar 

  20. J.C. Nagtegaal, D.M. Parks, and J.R. Rice, Computer Methods in Applied Mechanics and Engineering 4 (1974) 153.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. C. Torre, Berg-und Huttenleute der Hochschule Loben 93 (1948) 62.

    Google Scholar 

  22. R.C. Becker, R.E. Smelser, and O. Richmond, unpublished research (1985).

    Google Scholar 

  23. R.D. Thomson and J.W. Hancock, Res Mechanica 16 (1985) 135.

    Google Scholar 

  24. J.R. Rice and M.A. Johnson, in Inelastic Behavior of Solids, M.F. Kanninen et al. (eds.), McGraw-Hill, New York (1970) 641.

    Google Scholar 

  25. R.M. McMeeking, Journal of the Mechanics and Physics of Solids 23 (1977) 371.

    Google Scholar 

  26. N. Aravas and R.M. McMeeking, Journal of the Mechanics and Physics of Solids 33 (1985) 25.

    Article  ADS  Google Scholar 

  27. S. Aoki, K. Kishimoto, A. Takeya, and M. Sakata, International Journal of Fracture 24 (1984) 267–278.

    Google Scholar 

  28. N. Aravas and R.M. McMeeking, International Journal of Fracture 29 (1985) 21–38.

    Article  Google Scholar 

  29. V. Tvergaard and A. Needleman, Journal of the Mechanics and Physics of Solids 35 (1987) 151.

    Article  MATH  Google Scholar 

  30. C.L. Horn and R.M. McMeeking, Journal of the Mechanics and Physics of Solids 37 (1989) 395.

    Article  ADS  Google Scholar 

  31. G.R. Irwin, in Structural Mechanics, Proceedings of 1st Symposium on Naval Structural Mechanics, J.N. Goodier and N.J. Hoff (eds.), Pergamon Press, Oxford (1960) 557.

    Google Scholar 

  32. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McMeeking, R.M., Hom, C.L. (1990). Finite element analysis of void growth in elastic-plastic materials. In: Knauss, W.G., Rosakis, A.J. (eds) Non-Linear Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2444-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2444-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4064-0

  • Online ISBN: 978-94-017-2444-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics