Skip to main content

Synthetic Proper Elements for Outer Main Belt Asteroids

  • Conference paper
New Developments in the Dynamics of Planetary Systems

Abstract

For the orbits with low to moderate inclination and eccentricity, in the asteroid main belt, the analytically computed proper elements are accurate to a level very close to the best result achievable by any analytical theory. This fundamental limitation results from the infinite web of resonances and because of the occurrence of chaotic motions. Still, there are some regions of the belt in which these proper elements are of degraded accuracy, thus preventing a reliable definition of asteroid families and detailed studies of the dynamical structure. We have used a different method to compute asteroid proper elements, following the approach introduced in the LONGSTOP project to describe the secular dynamics of the major outer planets. By applying purely numerical techniques, we produced so-called ‘synthetic’ proper elements for a catalog of 10, 256 asteroids with osculating semimajor axes between 2.5 and 4.0 AU.

The procedure consisted of simultaneous integration of asteroid and planetary orbits for 2 Myr, with online filtering of the short-periodic perturbations. The output of the integration was spectrally resolved, and the principal harmonics (proper values) extracted from the time series. For each asteroid we have also tested the accuracy and stability in time of the proper elements, and estimated the maximum Lyapunov Characteristic Exponent to monitor the chaotic behaviors. This provided information on the reliability of the data for each orbit, in particular allowing to select 1,852 cases for an extended integration (10 Myr) of the orbits showing instability. The results indicate that for more than half of the cases the proper elements have a time stability improved by more than a factor 3 with respect to the elements computed by the previous analytical theory. But of course there are also unstable cases for which the proper elements are less accurate and reliable, the extreme examples being 23 orbits exhibiting hyperbolic escape from the solar system. This form of escape from the asteroid belt could be responsible for a significant mass loss over the age of the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Applegate, J. H., Douglas, M. R., Gursel, J., Sussman, G. J. and Wisdom, J.: 1986, ‘The outer solar system for 200 million years’, Astr. J. 92, 176–194.

    Google Scholar 

  • Arnold, V. I.: 1963, ‘Small denominators and problems of stability of motion in classical and celestial mechanics’, Russ. Math. Sur. 18, 85–191.

    Google Scholar 

  • Carpino, M., Milani, A. and Nobili, A. M.: 1987, ‘Long-term numerical integrations and synthetic theories for the motion of the outer planets’, Astr. Astrophys. 181, 182–194.

    ADS  MATH  Google Scholar 

  • Cohen, C. J. and Hubbard, E. C.: 1965, ‘Libration of the close approaches of Pluto to Neptune’, Astr. J. 70, 10–13.

    Google Scholar 

  • Cohen, C. J., Hubbard, E. C. and Oesterwinter, C.: 1973, Astr. Papers Amer. Ephem. Naut. Alm. XXII part I.

    Google Scholar 

  • Gronchi, G. F. and Milani, A.: 2000, ‘Proper elements for Earth crossing asteroids’, Icarus,in press. Hergenrother, C. W., Larson, S. M. and Spahr, T. B.: 1996, ‘The Hansa family: A new high-inclination asteroid family’, BAAS 28 1097.

    Google Scholar 

  • Kinoshita, H. and Nakai, H.: 1984, ‘Motions of the perihelions of Neptune and Pluto’, Celest. Mech. & Dyn. Aste. 34, 203.

    Article  ADS  MATH  Google Scholar 

  • Knezevié, Z.: 1999, ‘Veritas Family Age Revisited’, in: J. Svoren, E. M. Pittich and H. Rickman (eds.), Evolution and source regions of asteroids and comets, pp. 153–158.

    Google Scholar 

  • Kneevié, Z. and Jovanovii, B.: 1997, ‘Is the chaotic clock ticking correctly?’, Bull. Astr. Belgrade 156, 47–69.

    ADS  Google Scholar 

  • Laskar, J.: 1988, ‘Secular evolution of the solar system over 10 million years’, Aste Astrophys. 198 341–362.

    Google Scholar 

  • Laskar, J.: 1989, ‘A numerical experiment on the chaotic behaviour of the solar system’, Nature 338, 237–238.

    Article  ADS  Google Scholar 

  • Lemaitre, A. and Morbidelli, A.: 1994, ‘Proper elements for highly inclined asteroidal orbits’, Celest. Mech. & Dyn. Aste 60, 29–56.

    Article  ADS  MATH  Google Scholar 

  • Milani, A.: 1993, ‘The Trojan asteroid belt: proper elements, stability, chaos and families’, Celest. Mech. & Dyn. Astr. 57, 59–94.

    Article  MathSciNet  ADS  Google Scholar 

  • Milani, A.: 1994, ‘The Dynamics of the Trojan Asteroids’, in: A. Milani, M. Di Martino and A. Cellino (eds), Asteroids, Comets, Meteors 1993, Kluwer Acad. Publ. Dordrecht, pp. 159–174.

    Google Scholar 

  • Milani A. and Farinella, P.: 1994, ‘The age of the Veritas asteroid family deduced by chaotic chronology’, Nature 370, 40–42.

    Article  ADS  Google Scholar 

  • Milani, A. and Kneevié, Z.: 1990, ‘Secular perturbation theory and computation of asteroid proper elements’, Celest. Mech. & Dyn. Aste 49, 347–411.

    Article  ADS  MATH  Google Scholar 

  • Milani, A. and Kneevié, Z.: 1992, ‘Asteroid proper elements and secular resonances’, Icarus 98, 211–232.

    Article  ADS  Google Scholar 

  • Milani, A. and Knezevié, Z.: 1994, ‘Asteroid proper elements and the dynamical structure of the asteroid main belt’, Icarus 107, 219–254.

    Article  ADS  Google Scholar 

  • Milani, A. and Knezevié, Z.: 1999, ‘Asteroid mean elements: higher order and iterative theories’, Celest. Mech. & Dyn. Astr. 71, 55–78.

    Article  ADS  MATH  Google Scholar 

  • Milani, A. and Nobili, A. M.: 1988, ‘Integration error over a very long time span’, Celest. Mech. & Dyn. Astr. 43, 1–34.

    MathSciNet  ADS  MATH  Google Scholar 

  • Milani, A. and Nobili, A. M.: 1992, ‘An example of stable chaos in the solar system’, Nature 357, 569–571.

    Article  ADS  Google Scholar 

  • Milani, A., Nobili, A. M. and Carpino, M.: 1987, ‘Secular variations of the semimajor axes: theory and experiments’, Astr. Astrophys. 172, 265–279.

    ADS  MATH  Google Scholar 

  • Milani, A., Nobili, A. M. and Knezevié, Z.: 1997, ‘Stable chaos in the asteroid belt’, Icarus 125, 13–31.

    Article  ADS  Google Scholar 

  • Morbidelli, A. and Guzzo, M.: 1997, ‘The Nekhoroshev Theorem and the Asteroid Belt Dynamical System’, Celest. Mech. & Dyn. Astr. 65, 107–136.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Morbidelli, A. and Nesvornÿ, D.: 1999, ‘Numerous weak resonances drive asteroids toward terrestrial planets orbits’, Icarus 139, 295–308.

    Article  ADS  Google Scholar 

  • Morbidelli A., Zappalà, V., Moons, M., Cellino, A. and Gonczi, R.: 1995, ‘Asteroid families close to mean motion resonances: dynamical effects and physical implications’, Icarus 118, 132–154. Nesvornÿ, D. and Morbidelli, A.: 1998, ‘Three-body mean motion resonances and the chaotic structure of the asteroid belt’, Aste. J. 116, 3029–3037.

    Google Scholar 

  • Nobili, A. M., Milani, A. and Carpino, M.: 1989, ‘Fundamental frequencies and small divisors in the orbits of the outer planets’, Aste. Astrophys. 210, 313–336.

    MathSciNet  ADS  Google Scholar 

  • Vokrouhlickÿ, D., Broz, M., Farinella, P. and Knezevié, Z.: 1999, ‘Yarkovsky-driven leakage of Koronis family and the case of 2953 Vysheslavia’, Bull. Am. Aste Soc. 31 (4), 1111.

    ADS  Google Scholar 

  • Zappalà, V., Cellino, A., Farinella, P. and Knezevié, Z.: 1990, ‘Asteroid families I: identification by hierarchical clustering and reliability assessment’, Aste. J. 100, 2030–2046.

    Article  ADS  Google Scholar 

  • Zappalà, V., Bendjoya, Ph., Cellino, A., Farinella, P. and Froeschlé, C.: 1995, C.: 1995, ‘Asteroid families: search of a 12,487-asteroid sample using two different clustering techniques’, Icarus 116, 29 1314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Knežević, Z., Milani, A. (2001). Synthetic Proper Elements for Outer Main Belt Asteroids. In: Dvorak, R., Henrard, J. (eds) New Developments in the Dynamics of Planetary Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2414-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2414-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5702-0

  • Online ISBN: 978-94-017-2414-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics