The Role of the Posterior Parietal Cortex and Cerebellum in the Visual Guidance of Movement

  • J. F. Stein
Part of the NATO ASI Series book series (ASID, volume 85)


A logical way to approach the problem of finding out how vision controls movement is first to describe how visual cortical areas connect to motor structures. There are two main outputs from the visual system which are often called the ‘what’ and ‘where’ pathways (Ungerleider & Mishkin, 1982; Mishkin, 1983)). The ‘what’ stream is fed by both the parvo and magnocellular components of the retinogeniculate pathway (Merrigan & Maunsell, 1993). It is thought to be specialised for the analysis of the shape and colour of objects in order to identify them, and it projects laterally into the inferotemporal cortex. So lesions there cause visual agnosia, the inability to recognise objects by sight.


Purkinje Cell Cerebellar Cortex Mossy Fibre Inferior Parietal Lobule Posterior Parietal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus JS (1971) Cerebellar learning. Math.Biosci., 10, 25–61.CrossRefGoogle Scholar
  2. Allen GI & Tsukahara M (1974) Cerebrocerebellar interactions. Physiol.Review., 54, 957–1006.Google Scholar
  3. Andersen RA, Essig GK & Siegel RM (1985) Encoding of spatial location. Science, 230, 456–458.PubMedCrossRefGoogle Scholar
  4. Armstrong, DM (1974) Functional significance of the inferior olive. Physiol.Rev., 54, 358–417.PubMedGoogle Scholar
  5. Baizer JS & M Glickstein (1974) Role of cerebellum in prism adaptation. J. Physiol.(Lond), 36, 34 P.Google Scholar
  6. Baker, J, A Gibson, M Glickstein & J Stein (1976) Visual cells in the pontine nuclei of the cat. J.Physiol.(Lond)., 255, 414–433.Google Scholar
  7. Behrinan M & Moser MC (1990) A connectionist account of neglect dyslexia. J.Cognitive Neurosci., 2: 96–122.CrossRefGoogle Scholar
  8. Blomfield M & Marr D (1970) Cerebellar learning. Nature, 227, 1224–1226.PubMedCrossRefGoogle Scholar
  9. Braitenberg V (1988) The cerebellum and the physics of movement, in Glickstein, Yeo & Stein, see below.Google Scholar
  10. Bushnell MC & Goldberg ME (1981) Visual attention. J.Neurophysiol., 46, 775. Carpenter, RHS (1972). Cerebellectomy and the transfer function of the vestibulo-ocular reflex in the decerebrate cat. Proc.R.Soc.Lond.B., 181, 353–374.Google Scholar
  11. Corballis MC (1991) The lopsided ape. Oxford University Press.Google Scholar
  12. Comelissen PL, Richardson AR, Mason A, Fowler MS & Stein JF (1994) Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35, 1483–1494.CrossRefGoogle Scholar
  13. Comelissen PL, Hansen PC, Bradley L & Stein JF (1994) Analysis of perceptual confusions between 9 sets of consonant-vowel sounds in normal and dyslexic adults. Cognition (in press).Google Scholar
  14. Crepel FC & Jaillard D (1991) Long tenn changes in synaptic strength in cerebellar P cells. J.Physiol. 432, 123–141.PubMedGoogle Scholar
  15. Decety JH, Sjoholm S, Ryding E, Sternberg D & Ingvar D (1990) Cerebellum participates in mental activity. Brain Res., 53. 5 313.Google Scholar
  16. Duhamel P & Goldberg M (1992) Updating of the representation of visual space by intended eye movements. Science, 255, 90–93.PubMedCrossRefGoogle Scholar
  17. Eden GF, Stein JF, Wood HM & Wood FB (1994) Differences in eye movements and reading problems in dyslexic and normal children. Vision Research, 34, 1345–1358.PubMedCrossRefGoogle Scholar
  18. Eden GF, Stein JF & Wood FB (1995) Temporal and spatial visual processing in reading disabled and normal children. Cortex (In press)Google Scholar
  19. Eden GF, Stein JF & Wood FB (1993) Visuospatial ability and language processing in reading disabled and normal children. In: ‘Facets of Dyslexia and its Remediation’, ed. S.F.Wright & R.Groner, Elsevier.Google Scholar
  20. Fawcett AJ & Nicolson RI (1992) Automatisation deficits in balance for dyslexic children. Perceptual and Motor Skills, 75, 507–529.PubMedCrossRefGoogle Scholar
  21. Friston K, Passingham R, Frackowiack R & Brooks D (1992) PET study of motor learning. Proc. Royal Soc.Biol., 248, 223–235.Google Scholar
  22. Galaburda AM, Sherman GF, Rosen GD, Aboitz F & Geschwind N (1985) Developmental dyslexia: Four consecutive cases with cortical anomalies. Annals of Neurology, 18, 222–233.Google Scholar
  23. Galaburda A (1992) Magnocellular defect in developmental dyslexia. Proc.NY Acad.Sci., 682, 70–83.CrossRefGoogle Scholar
  24. Galaburda A, Rosen G & Sherman M (1994) Impaired magnocellular organisation in the medial geniculate nucleus of dyslexics Proc.N.Y.Acad.Sci., 91, 8010–8013.Google Scholar
  25. Garthwaite J (1988) Excitation of NMDA receptor releases Nitric Oxide. Nature, 336, 385–387.PubMedCrossRefGoogle Scholar
  26. Gellman R, Gibson AR & Houk J (1985) Inferior olivary neurones as event-markers. J.Neurophysiol., 54, 40–52.PubMedGoogle Scholar
  27. Geschwind, N & Galaburda, AM (1987) ‘Cerebral Lateralisation: Biological Mechanisms, Associations and Pathology, MIT Press, Cambridge, Mass. & London, UK.Google Scholar
  28. Gilbert C & Thach T (1977) Purkinje cell activity during motor learning. Brain Res., 128, 309.PubMedCrossRefGoogle Scholar
  29. Glickstein MG (1992) The cerebellum & motor learning. Current opinion in Neurobiology, 2, 802–806PubMedCrossRefGoogle Scholar
  30. Glickstein MG, JL Cohen, B Dixon, A Gibson, M Hollins, E La Bossiere and F Robinson (1980) Corticopontine visual projections in macaque monkeys. J.Comp.Neurol., 190, 209–229.PubMedCrossRefGoogle Scholar
  31. Glickstein MG & JF Stein (1991) Paradoxical movements in Parkinson’s disease. TINS, 14, 480–482.PubMedGoogle Scholar
  32. Glickstein MG, Yeo C & Stein JF (1988) The Cerebellum and Neuronal Plasticity. Plenum Press.Google Scholar
  33. Gonshor A & G Melvill-Jones (1973) Changes of human vestibulo-ocular response induced by vision-reversal during head rotation. J.Physiol.(Lond), 234, 102–103.Google Scholar
  34. Goodale MA, Milner AD, Jakobson LS & Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154–156.PubMedCrossRefGoogle Scholar
  35. Goodale MA & Milner AD (1992) Separate visual pathways for perception and action. TINS, 15: 20–25.PubMedGoogle Scholar
  36. Graf W, J Simpson & CS Leonard (1988) Spatial organization of visual messages of the rabbit’s cerebellar flocculus. 11. Complex and simple spike responses of Purkinje cells. J.Neurophysiol., 60 2091–2121.Google Scholar
  37. Harris CS (1965) Perceptual adaptation to inverted, reversed and displaced vision. Psychol.Rev., 72, 419–444.PubMedCrossRefGoogle Scholar
  38. Heilman K & Valenstein EC (1993) ‘Clinical Neuropsychology’, Oxford University Press, Oxford, UKGoogle Scholar
  39. Hinshelwood C (1896) A case of dyslexia, a peculiar form of word blindness. Lancet 2, 1451–54.CrossRefGoogle Scholar
  40. Holmes G (1939) The cerebellum of man. Brain, 62, 1–30.CrossRefGoogle Scholar
  41. Ito M (1984) The Cerebellum and Neural Control. Raven Press.Google Scholar
  42. Ito M (1989) Long-term depression of Purkinje cell responses. Ann.Rev.Neurosci., 12, 5–102.CrossRefGoogle Scholar
  43. Kawato M & Gomi H (1992) Neural network model for VOR/OKR learning. TINS, 15, 445–452.PubMedGoogle Scholar
  44. Kerr GK, Miall RC & Stein JF (1993) Visuomotor adaptation during inactivation of the cerebellar nuclei. Human Movement Science, 1.2 71–84.Google Scholar
  45. Livingstone MS, Rosen GD, Drislane FW & Galaburda AM (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc.Nati.Acad.Sci., 88, 7943–7947.CrossRefGoogle Scholar
  46. Llinas R (1977) The Inferior Olive - its role in motor learning. Science, 190, 1230. Llinas R & Sugimori K (1980) Ionic currents in Purkinje cells. J.Physiol., 305, 197–220. Lovegrove WJ & Williams MC (1993) Visual temporal processing deficits in specificGoogle Scholar
  47. reading disability. p 311–330 in Willows DM ed. ‘Visual Processes in Reading and ReadingGoogle Scholar
  48. Disabilities’. L. Erlbaum.Google Scholar
  49. McAnally K (1994) Reduced auditory temporal resolution in dyslexic subjects. 23rd Rodin Academy International Conference, Malta.Google Scholar
  50. McKay WA & Murphy JT (1979) Cerebellar modulation of reflex gain. Progress in Neurobiol., 13 361–392.CrossRefGoogle Scholar
  51. Marshall JC & Newcombe F (1966) Syntactic and semantic errors in paralexia. Neuropsychologia, 4, 169–176.CrossRefGoogle Scholar
  52. Miall RC, DJ Weir & JF Stein (1987) Visuo-motor tracking during reversible inactivation of the cerebellum. Exp.Brain Res., 65, 455–464.PubMedCrossRefGoogle Scholar
  53. Miall RC, DJ Weir & JF Stein (1988) Planning of movement parameters in a visual tracking task. Behay.Brain Res., 27, 1–118.CrossRefGoogle Scholar
  54. Miall RC, Weir DJ, Wolpert DM & Stein JF (1993) Is the cerebellum a Smith Predictor? J.Motor Behay., 25, 203–216.CrossRefGoogle Scholar
  55. Miles FA, DJ Braitman & BM Dow (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. Electrophysiological observations in flocculus of adapted monkeys. J. Neurophysiol., 43, 1477–1493.Google Scholar
  56. Mishkin M (1983) Object vision and spatial vision. TINS, 61 414.Google Scholar
  57. Myers RE, RW Sperry & N.M. McCurdy (1968) Neural mechanisms in visual guidance of limb movements. Arch.Neurol., 7, 195–202.CrossRefGoogle Scholar
  58. Oakley DA & IS Russell (1977) Subcortical storage of Pavlovian conditioning in the rabbit. Physiol.Behay., 18, 931–937.CrossRefGoogle Scholar
  59. Ojakangas CL & Ebner TJ (1992) Simple and Complex spike activity in the cerebellum during visuomotor adaptation in monkeys. J Neurophysiol., 6.8 2222–2236.Google Scholar
  60. Passingham R (1987) Two cortical systems for directing movement. CIBA Symposium 132, p. 151–164.Google Scholar
  61. Pouget J & Sejnowski T (1993) Egocentric representation in early vision. J.Cog. NSci. 12, 675–687.Google Scholar
  62. Precht W (1978) Neuronal Operations in the Vestibular System. Berlin, Heidelberg, Springer-Verlag.Google Scholar
  63. Riddell P, Fowler MS & Stein JF (1990) Spatial discrimination in children with poor vergence control. Perceptual & Motor Skills, 70, 707–718.CrossRefGoogle Scholar
  64. Rutter M & Yule W (1975) The Concept of Specific Reading Retardation. J. Child Psychol. 1. 6 181197.Google Scholar
  65. Sakata H, Takaoka Y, Kawarasaki A & Shibutani H (1973) Somatosensory properties of neurones in area 5 of the rhesus monkey. Brain Res., 64, 85–102.PubMedCrossRefGoogle Scholar
  66. Springer SP & Deutsch G (1992) Left Brain, Right Brain. Freeman.Google Scholar
  67. Stein JF (1978) Effects of cooling PPC in monkeys. In: ‘Active Touch’, ed.G.Gordon, pp.79–90. Pergamon Press.Google Scholar
  68. Stein JF (1986) Role of cerebellum in visual guidance of movement. Nature, 32. 3 217221.Google Scholar
  69. Stein JF (1991) (ed.) Vision and Visual Dyslexia; Vol.13 of Encyclopedia of Vision and Visual Dysfunction. Macmillan Press, London.Google Scholar
  70. Stein JF (1992) The representation of egocentric space in the posterior parietal cortex. Behay. Brain Sci., 15, 691–700.Google Scholar
  71. Stein JF & Fowler MS (1985) Effect of monocular occlusion on visuomotor perception and reading in dyslexic children. Lancet, July, 69–73.Google Scholar
  72. Stein JF & Fowler MS (1993) Unstable binocular control in children with specific reading retardation. J.Res. in Reading, 16, 30–45.Google Scholar
  73. Stein JF & Glickstein M (1992) The role of the cerebellum in the visual guidance of movement. Physiol.Rev., 72, 967–1018.PubMedGoogle Scholar
  74. Stein JF, Riddell P & Fowler MS (1988) Disordered vergence eye movement control in dyslexic children. Brit. ). Ophthalmol., 72, 162–166.Google Scholar
  75. Takemori S & Cohen B (1974) Loss of visual suppression of VOR after floccular lesions in monkeys. Brain Res., 72, 203–212.PubMedCrossRefGoogle Scholar
  76. Tallai P (1993) Temporal information processing in the Nervous System. Ann. N.Y.Acad.Sci., 68.2 27–48.Google Scholar
  77. Thier P, W Kochler & VW Buttner (1988) Neuronal activity in the dorsolateral pontine nuclei of the alert monkey modified by visual stimuli and eye movements. Exp.Brain Res., 70, 496–512.PubMedCrossRefGoogle Scholar
  78. Thompson RF (1988) Cerebellar role in conditioning nictitating membrane reflex. TINS, 11, 152–156.PubMedGoogle Scholar
  79. Ungerleider LG & Mishkin M (1982) Two cortical visual systems. In: ‘The Analysis of Visual Behavior, ed. Ingle DJ, Goodale MA & Mansfield RJW. MIT Press.Google Scholar
  80. Yeo C & Glickstein MG (1990) Conditioning the nictitating membrane reflex. Exp. Br. Res., 60, 87–96.CrossRefGoogle Scholar
  81. Zipser D & Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature (Lond.), 331, 679–684.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • J. F. Stein
    • 1
  1. 1.University Laboratory of PhysiologyOxfordUK

Personalised recommendations