Skip to main content

Functional Architecture of Cortical Networks Underlying Visual Reaching

  • Chapter
Neural Bases of Motor Behaviour

Part of the book series: NATO ASI Series ((ASID,volume 85))

  • 103 Accesses

Abstract

We exist within a intricate three-dimensional world where most of our movements are made with respect to targets and references rooted to objects which are external to our own bodies. The complexities of successfully navigating one’s limbs through this extrapersonal space have only recently become fully appreciated. Planning and execution of movements in extrapersonal space require the combination of information regarding the locations of targets of interest and information concerning the geometry of our own body with respect to those targets. The act of reaching to visual targets provides a good model for the study of this general problem encountered in motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L Alexander GE, Crutcher MD (1990a) Neural representations of the target (goal) of visually guided ann movements in three motor areas of the monkey. J Neurophysiol 64, 164–178.

    PubMed  CAS  Google Scholar 

  2. Alexander GE, Crutcher MD (1990b) Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64, 133–150.

    PubMed  CAS  Google Scholar 

  3. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230, 456–458.

    Article  PubMed  CAS  Google Scholar 

  4. Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3, 532–548.

    PubMed  CAS  Google Scholar 

  5. Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296, 65–113.

    Article  PubMed  CAS  Google Scholar 

  6. Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990b) Eye position effects on visual, memory and saccade-related activity in area LIP and 7a of macaque. JNeurosci 10, 11761196.

    Google Scholar 

  7. Asanuma H, Rosen I (1972) Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp Brain Res 14, 243–256.

    Article  PubMed  CAS  Google Scholar 

  8. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. 2. Spatial properties. J Neurophysiol 66, 1109–1124.

    PubMed  CAS  Google Scholar 

  9. Bauswein E, Fromm C (1992) Activity in the precentral motor areas after presentation of targets for delayed reaching movements varies with the initial arm position. EurJNeurosci 4, 1407–1410.

    Article  PubMed  Google Scholar 

  10. Blatt GJ, Andersen RA, Stoner OR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299, 421–445.

    Article  PubMed  CAS  Google Scholar 

  11. Blouin J, Bard C, Teasdale N, Paillard J, Fleury M, Forget M, Lamarre Y (1993) Reference systems for coding spatial information in normal subjects and a deafferented patient. Exp Brain Res 93, 324–331.

    Article  PubMed  CAS  Google Scholar 

  12. Boussaoud D (1995) Primate premotor cortex.: Modulation of preparatory neuronal activity by gaze angle. J Neurophysiol 73, 886–889.

    PubMed  CAS  Google Scholar 

  13. Bumod Y, Grandguillaume P, Otto I, Johnson PB, Caminiti R (1992a) Reaching toward visual targets. II. Computational studies. In: Caminiti R, Johnson PB, Bumod Y (eds) Control of arm movement in space. Springer-Verlag, Berlin, pp 159–174.

    Google Scholar 

  14. Bumod Y, Granguillaume P, Otto I, Ferraina S, Johnson PB, Caminiti R (1992b) Visuomotor transformations underlying amt movements toward visual targets: a neural network model of cerebral cortical operations. J Neurosci 12, 1435–1453.

    Google Scholar 

  15. Caminiti R Johnson PB, Bumod Y, Galli C, Ferraina S (1990a) Shift of preferred directions of premotor cortical cells with arm movements performed across the workspace. Exp Brain Res 83 228–232.

    Google Scholar 

  16. Caminiti R, Johnson PB, Urbano A (1990b) Making ann movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10, 2039–2058.

    PubMed  CAS  Google Scholar 

  17. Caminiti R, Johnson PB, Galli C, Ferraina S, Bumod Y (1991) Making arm movements in different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 11, 1182–1197.

    PubMed  CAS  Google Scholar 

  18. Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287, 393–421.

    Article  PubMed  CAS  Google Scholar 

  19. Chang HT, Ruch RC, Ward AA (1947) Topographic representation of muscles in the motor cortex of monkeys. J Neurophysiol 10, 39–56.

    PubMed  Google Scholar 

  20. Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macacaque: A dual tracer study. J Comp Neurol 269, 392–413.

    Article  PubMed  CAS  Google Scholar 

  21. Colby CL, Duhamel J-R (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29, 517–537.

    Article  PubMed  CAS  Google Scholar 

  22. Covey E, Gattass R, Gross CG (1982) A new visual area in the parieto-occipital sulcus of the macaque. Soc Neurosci Abs 8, 681.

    Google Scholar 

  23. Darling WG, Gilchrist L (1991) Is there a preferred coordinate system for perception of hand orientation in three-dimensional space? Exp Brain Res 85, 405–416.

    Article  PubMed  CAS  Google Scholar 

  24. di Pellegrino G, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. JNeurosci 13, 1227–1243.

    Google Scholar 

  25. Donoghue JP, Leibovic S, Sanes JN (1992) Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp Brain Res 89, 1–19.

    Article  PubMed  CAS  Google Scholar 

  26. Ferraina S and Bianchi L (1994) “Posterior parietal cortex: Functional properties of neurons in area 5 during an instructed-delay reaching task within different parts of space”. Exp Brain Res 99,175–178.

    Google Scholar 

  27. Galletti C, Battaglini PP (1989) Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J Neurosci 9, 1112–1125.

    PubMed  CAS  Google Scholar 

  28. Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res 96, 221–229

    Article  PubMed  CAS  Google Scholar 

  29. Galletti C, Battaglini PP, Fattori P (1991) Functional properties of neurons in the anterior bank of the parietooccipital sulcus of the macaque monkey. EurJ Neurosci 3, 452–461.

    Article  Google Scholar 

  30. Gattass R, Sousa APB, Covey E (1985) Cortical visual areas of the macaque: possible substrates for pattern recognition mechanisms. In: Chagas C, Gattass R, Gross C (eds) Pattern Recognition Mechanisms. Pontificiae Acadamiae Scientarium Scripta Varia. Rome, pp 1–20.

    Google Scholar 

  31. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. JNeurosci 2, 1527–1537.

    CAS  Google Scholar 

  32. Georgopoulos AP, Kalaska JF, Crutcher MD, Caminiti R, Massey JT (1984) The representation of movement direction in the motor cortex: Single cell and population studies. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. John Wiley, and Sons, New York, pp 501–524.

    Google Scholar 

  33. Georgopoulos AP, Taira M, Lukashin A (1993) Cognitive neurophysiology of the motor cortex. Science 260, 47–52.

    Article  PubMed  CAS  Google Scholar 

  34. Ghez C, Gordon J, Ghilardi MF, Christakos CN, Cooper SE (1990) Roles of proprioceptive input in the programming of ann trajectories. Cold Spring Harbor Symp Quant Biol 55, 837–847.

    Google Scholar 

  35. Ghez C, Hening W, Gordon J (1991) Organization of voluntary movement. Curr Opin Neurobiol 1, 664–671.

    Google Scholar 

  36. Gnadt JW, Bracewell RM, Andersen RA (1991) Sensorimotor transformation during eye movements to remembered visual targets. Vision Res 31, 693–715.

    Article  PubMed  CAS  Google Scholar 

  37. Helms-Tillery SI, Flanders M, Soechting JF (1991) A coordinate system for the synthesis of visual and kinesthetic information. J Neurosci 11, 770–778.

    Google Scholar 

  38. Hochennan S (1993) Proprioceptive guidance and motor planning of reaching movements to unseen targets. Exp Brain Res 95, 349–358.

    Google Scholar 

  39. Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol (Lon) 165, 559–568.

    CAS  Google Scholar 

  40. Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158, 267–294.

    Google Scholar 

  41. Huntley GW, Jones EG (1991) Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. JNeurophysiol 66, 390–413.

    CAS  Google Scholar 

  42. Johnson PB, Ferraina S, Caminiti R (1993) Cortical networks for visual reaching. Exp Brain Res 97, 361–365.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching. Physiological and anatomical organization of frontal and parietal lobe ann regions. Cereb Cortex (in press)

    Google Scholar 

  44. Josin G (1988) Neural-space generalization of a topological transformation. Biol Cybern 59, 283–290.

    Article  PubMed  CAS  Google Scholar 

  45. Karnath HO, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116, 383–396.

    Article  PubMed  Google Scholar 

  46. Kawato M, Isobe M, Maeda Y, Suzuki R (1988) Coordinates transformation and learning control for visually-guided voluntary movement with iteration: A Newton-like method in a function space. Biot Cybern 59, 16 1177.

    Google Scholar 

  47. Kwan HC, Murphy JT, Wong YC (1987) Interactions between neurons in precentral cortical zones controlling different joints. Brain Res 400, 259–269.

    Article  PubMed  CAS  Google Scholar 

  48. Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: the role of area 5 in monkey. Cereb Cortex 5, 391–409.

    Article  PubMed  CAS  Google Scholar 

  49. Macko KA, Mishkin M (1985) Metabolic mapping of higher-order visual areas in the monkey. In: Sokoloff L (ed) Brain Imaging and Brain Function. Raven Press, New York, pp 73–86.

    Google Scholar 

  50. Marsino T (1992) Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry. Brain Behav E vol 40, 98–111.

    Article  Google Scholar 

  51. Raphan T, Dai M, Cohen B (1992) Spatial orientation of the vestibular system. Ann NY Acad Sci 656, 140157.

    Google Scholar 

  52. Riehle A (1991) Visually induced signal-locked neuronal activity changes in precentral motor areas of monkey: hierarchical progression of signal processing. Brain Res 540, 131–137.

    Article  PubMed  CAS  Google Scholar 

  53. Roll R, Velay JL, Roll JP (1991) Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp Brain Res 85, 432–444.

    Article  Google Scholar 

  54. Saves JN, Evarts EV (1984) Motor psychophysics. Hum Neurobiol 2, 217–225.

    Google Scholar 

  55. Savaki HE, Kennedy C, Sokoloff L, Mishkin M (1993) Visually guided reaching with the forelimb contralateral to a “blind” hemisphere: a metabolic mapping study in monkeys. J Neurosci 13, 2772–2789.

    PubMed  CAS  Google Scholar 

  56. Schall JD, Morel A, Kaas JH (1993) Topography of supplemental eye field afferents to frontal eye field in macaque: implications for mapping between saccade coordinate systems. Vis Neurosci 10, 385–393.

    Article  PubMed  CAS  Google Scholar 

  57. Schwartz AB, Kenner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. 1. Relations between single cell discharge and direction of movement. J Neurosci 8, 2913–2927.

    PubMed  CAS  Google Scholar 

  58. Soechting JF, Tillery SIH, Flanders M (1990) Trasformation from head to shoulder-centered representation of target direction in ann movements. J Cogn Neurosci 2, 32–43.

    Article  Google Scholar 

  59. Soechting JF, Flanders M (1992) Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu Rev Neurosci 15, 167–191.

    Article  PubMed  CAS  Google Scholar 

  60. Taylor JL, McCloskey DI (1991) Illusions of head and visual target displacement induced by vibration of neck muscles. Brain 114, 755–759.

    Article  PubMed  Google Scholar 

  61. Trotter Y, Celebrini S, Stricanne B, Thorpe S, Imbert M (1992) Modulation of neural stereoscopic processing in primate area VI by the viewing distance. Science 257, 1279–1281.

    Article  PubMed  CAS  Google Scholar 

  62. Wanner TMJ, Maier MA, Hepp-Reymond MC (1989) Responses of motor cortex neurons to visual stimulation in the alert monkey. Neurosci Lett 98, 63–68.

    Article  Google Scholar 

  63. Wise SP, di Pellegrino G, Boussaoud D (1992) Primate premotor cortex: dissociation of visuomotor from sensory signals. J Neurophysiol 68, 969–972.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnson, P.B., Ferraina, S., Caminiti, R. (1996). Functional Architecture of Cortical Networks Underlying Visual Reaching. In: Lacquaniti, F., Viviani, P. (eds) Neural Bases of Motor Behaviour. NATO ASI Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2403-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2403-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4695-6

  • Online ISBN: 978-94-017-2403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics