The Timing of Human Movements

  • H. Heuer
Part of the NATO ASI Series book series (ASID, volume 85)


For many tasks it is not only important what one does, but also when one does it. Catching is an example. A grasp that is too early or too late will result in a failure; the timing is an integral and critical part of the action. Timing is controlled, and the time window in which the action can be performed successfully is specified by environmental variables. Thus the timing is extrinsic in addition to being controlled.


Motor Pattern Passive Force Target Pattern Bimanual Movement Motor Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschersieben, G. (1994). Afferente Informationen und die Synchronisation von Ereignissen. Frankfurt: LangGoogle Scholar
  2. Aschersieben, G. und Prinz, W. (1995). Synchronizing actions with events: The role of sensory information. Perception und Psychophysics (in press).Google Scholar
  3. Bootsma, R.J. (1989). Accuracy of perceptual processes subserving different perception-action systems. Quarterly Journal ofErperimental Psychology, 41A, 489–500.Google Scholar
  4. Bridgeman, B., Kirch, M. und Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception und Psychophysics, 29, 336–342.Google Scholar
  5. Bruce, V. und Green, P.R. (1985). Ysual perception. Physiology. Psychology and Ecology. London: Erlbaum. Brunswik, E. (1952). The conceptual framework of psychology. Chicago: University of Chicago Press.Google Scholar
  6. Camahan, H. und Lee, T.D. (1989). Training for transfer of a movement timing skill. Journal ofMotor Behavior, 21, 48–59.Google Scholar
  7. Carter, M.C. und Shapiro, D.C. (1984). Control of sequential movements: Evidence for generalized motor programs. Journal of Neurophysiology, 52, 787–796.Google Scholar
  8. Cruse, H., Dean, J., Heuer, H., und Schmidt, R.A. (1990). Utilization of sensory information for motor control. In: O. Neumann und W. Prinz (Eds), Relationships between perception and action. Current approaches. Berlin: Springer, pp. 43–79.CrossRefGoogle Scholar
  9. Derwort, A_ (1938). Untersuchungen Ober den Zeitablauf figurierter Bewegungen beim Menschen. Pflügers Archiv fu1r die gesamte Physiologie, 240, 661–675.CrossRefGoogle Scholar
  10. Deutsch, D. (1983). The generation of two isochronous sequences in parallel. Perception und Psychophysics, 34, 331–337.CrossRefGoogle Scholar
  11. Dunlap, K. (1910). Reactions on rhythmic stimuli, with attempt to synchronize. Psychological Review, 17, 399–416.CrossRefGoogle Scholar
  12. Ehrmann, V. (1988). Gefahrenrisiko und Unfallgefüudung von Fußgängern im Straßenverkehr: Simulationsexperiment zum Clberqueren von Fahrbahnen im fließenden Verkehr. Unveröffentlichte Diplomarbeit, Universität Bielefeld.Google Scholar
  13. Erkelens, C.J. und Collewijn, H. (1985a). Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Research, 25, 583–588.Google Scholar
  14. Erkelens, C.J. und Collewijn, H. (1985b). Eye movements and stereopsis during dichoptic viewing of moving random-dot stereograms. Vision Research, 25, 1689–1700.Google Scholar
  15. Gentner, D.R. (1987). Timing of skilled motor performance: tests of the proportional duration model. Psychological Review, 94, 255–276.CrossRefGoogle Scholar
  16. Hancock, P.A. und Newell, K.M. (1985). The movement speed-accuracy relationship in space-time. In: H. Heuer, U. Kleinbeck, und K.-H. Schmidt (Eds.), Motor behavior. Programming, control, and acquisition. Berlin: Springer, pp. 153–188.CrossRefGoogle Scholar
  17. Heuer, H. (1984). On re-scaleability of force and time in aiming movements. Psychological Research, 46, 73–86.CrossRefGoogle Scholar
  18. Heuer, H. (1987). Apparent motion in depth resulting from changing size and changing vergence. Perception, 16, 337–350.PubMedCrossRefGoogle Scholar
  19. Heuer, H. (1988a) Adjustment and re-adjustment of the relative timing of a motor pattern. Psychological Research, 50, 83–93.PubMedCrossRefGoogle Scholar
  20. Heuer, H. (1988b). Testing the invariance of relative timing. Comment on Gentner (1987). Psychological Review, 95, 552–557.PubMedCrossRefGoogle Scholar
  21. Heuer, H. (1990). Psychomotorrik. In: H. Spada (Ed.), Lehrbuch Allgemeines Psychologie. Bern: Huber, pp. 495–559Google Scholar
  22. Heuer, H. (1991). Invariant relative timing in motor-program theory. In: J. Fagard Sr P.H. Wolff (Eds.), The development of timing control and temporal organization in coordinated action. Invariant relative timing, rhythms, and coordination. Amsterdam: North-Holland, pp. 37–68.CrossRefGoogle Scholar
  23. Heuer, H. (1993). Estimates of time to contact based on changing size and changing target vergence. Perception, 22, 549–563.PubMedCrossRefGoogle Scholar
  24. Heuer, H. und Schmidt, R.A. (1988). Transfer of learning among motor patterns with different relative timing. Journal ofaperimental Psychology: Human Perception and Performance, 14, 241–252.CrossRefGoogle Scholar
  25. Heuer, H., Schmidt, R.A., und Ghodsian, D. (1995). Generalized motor programs for rapid bimanual tasks: A two-level multiplicative-rate model. (submitted).Google Scholar
  26. Holway, A.H. und Boring, E.G. (1941). Determinants of apparent visual size with distance variant. American Journal of Psychology, 54, 21–37.Google Scholar
  27. Howarth, C.l., Beggs, W.D.A, und Bowden, J.M. (1971). The relationship between speed and accuracy of movement aimed at a target. Acta Psychologica, 95, 207–218.CrossRefGoogle Scholar
  28. Ivry, R.I., Keele, S.W. und Diener, H.C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73, 167–180.Google Scholar
  29. Jagacinski, R.J., Marshbum, E., Klapp, S.T., und Jones, M.R. (1988). Tests of parallel versus integrated structure in polyrhythmic tapping. Journal of Motor Behavior, 20, 416–442.PubMedGoogle Scholar
  30. Kelso, J.AS. (1981). Contrasting perspectives on order and regulation in movement In: J. Long und A Baddeley (Eds.), Attention and performance IX. Hillsdale,N.J.: Erlbaum, pp. 437–457.Google Scholar
  31. Kelso, J.AS., Southard, D.L., und Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5, 229–238.PubMedCrossRefGoogle Scholar
  32. Klapp, S.T. (1979). Doing two things at once: the role of temporal compytibility. Memory and Cognition, 7, 375–381.CrossRefGoogle Scholar
  33. Klapp, S.T., Hill, M., Tyler, J., Martin, Z., Jagacinski, R, und Jones, M. (1985). On marching to two different drummers: Perceptual aspects of the dificulties. Journal of Experimental Psychology: Human Perception and Performance, 11, 814–828.PubMedCrossRefGoogle Scholar
  34. Lacquaniti, F., Terzuolo, C.A, und Viviani, P. (1983). The law relating kinematic and figural aspects of drawing movements. Acta Psychologica, 54, 115–130.PubMedCrossRefGoogle Scholar
  35. Langley, D.J. und Zelaznik, H.N. (1984). The acquisition of time properties associated with a sequential motor skill. Journal ofldotor Behavior, 16, 275–301.Google Scholar
  36. Lashley, K.S. (1951). The problem of serial order in behavior. In L.A Jeffress (Ed.), Cerebral mechanism in behavior. New York: Wiley, pp. 112–131.Google Scholar
  37. Lee, D.N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437–459.PubMedCrossRefGoogle Scholar
  38. Lee, D.N. (1992). Body-environment coupling. In: U. Neisser (Ed.),Ecological and interpersonal knowledge of the self Cambridge: Cambridge University Press.Google Scholar
  39. Lee, D.N. und Young, D.S. (1986). Gearing action to the environment In: H. Heuer und C. Fromm (Eds), Generation and modulation of action patterns. Berlin: Springer, pp. 217–230.CrossRefGoogle Scholar
  40. Lee, D.N., Young, D.S., Reddish, P.E., Lough, S. und Clayton, T.M.H. (1983). Visual timing in hitting an accelerating ball. Quarterly Journal ofExperimental Psychology, 35A, 333–346.Google Scholar
  41. MacKenzie, C.L., Marteniuk, R.G., Dugas, C., Liske, D. und Eickmeier, B. (1987). Three-dimensional movement trajectories in Fitts’ task: Implications for control. Quarterly Journal of Experimental Psychology, 39A, 629–647.Google Scholar
  42. Marteniuk, R.G., MacKenzie, C.L., und Baba, D.M. (1984). Bimanual movement control: Information processing and interaction effects. Quarterly Journal ofExperimental Psychology, 36A, 335–365.Google Scholar
  43. Marteniuk, R.G., MacKenzie, C.L., Jeannerod, M., Aihenes, S., und Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 41, 365–378.PubMedCrossRefGoogle Scholar
  44. Mates, J. (1994a). A model of synchronization of motor acts to a stimulus sequence. I. Timing and error corrections. Biological Cybernetics, 70, 463–473.PubMedCrossRefGoogle Scholar
  45. Mates, J. (19946). A model of synchronization of motor acts to a stimulus sequence. II. Stability analysis, error estimation and simulations. Biological Cybernetics, 70, 475–484.Google Scholar
  46. Meyer, D.E., Smith, J.E.K, und Wright, C.E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review, 89, 449–482.Google Scholar
  47. Peters, M. (1989). The relationship between variability of intertap intervals and interval duration. Psychological Research, 51, 38–42.CrossRefGoogle Scholar
  48. Repp, B.H. (1994). Relational invariance of expressive microstructure across global tempo changes in music performance: An exploratory study. Psychological Research/Psychologische Forschung, 56, 269292.Google Scholar
  49. Rosenbaum, D.A., Slotta, J.D., Vaughan, J., und Plamondon, R. (1991). Optimal movement selection. Psychological Science, 2, 86–91.CrossRefGoogle Scholar
  50. Roth, K. (1989). Taktik im Sportspiel Zum Erkldrungswert der Theorie generalisierter motorischer Programme fur die Regulation komplexer Bewegungshandlungen. Schorndorf: Hohmann.Google Scholar
  51. Savelsbergh, G.J.P., Whiting, H.T.A. und Bootsma, R.T. (1991). Grasping tau. Journal of Experimental Psychology: Human Perception and Performance, 17, 315–322.PubMedCrossRefGoogle Scholar
  52. Schiff, W. und Detwiler, M.L. (1979). Information used in judging impending collision. Perception, 8, 647–658. Schmidt, R.A. (1972). The Index of Preprogramming (IP): A statistical method for evaluating the role of feedback in simple movements. Psychonomic Science, 27, 83–85.Google Scholar
  53. Schmidt, R.A. (1980). On the theoretical status of time in motor-program representations. In: G.E. Stelmach und J. Requin (Eds.), Tutorial in motor behavior. Amsterdam: North-Holland, pp. 145–165.CrossRefGoogle Scholar
  54. Schmidt, RA. (1985). The search for invariance in skilled movement behavior. Research Quarterly for Exercise and Sport, 56, 188–200.CrossRefGoogle Scholar
  55. Schmidt, R.A. und Russell, D.G. (1972). Movement velocity and movement time as determinants of degree of preprogramming in simple movements. Journal ofExperimental Psychology, 96, 315–320.Google Scholar
  56. Schneider, D.M. und Schmidt, R.A. (1995) Units of action in motor control: Role of response complexity and target speed. Human Performance, 8, 27–49.Google Scholar
  57. Schöner, G. und Kelso, J.A.S. (1988). A synergetic theory of environmentally-specified and learned patterns of movement coordination.l: Relative phase dynamics. Biological Cybernetics, 58, 71–80.Google Scholar
  58. Spearman, C. (1927). The abilities of man. New York: MacMillan.Google Scholar
  59. Spijkers, W., Tachmatzidis, K., Debus, G., Fischer, M., und Kausche,I. (1994). Temporal coordination of alternative and simultaneous aiming movements of constrained timing structure. Psychological Research/Psychologische Forschung, 57, 20–29.Google Scholar
  60. Stevens, L.T. (1886). On the time sense. Mind, 11, 393–404.CrossRefGoogle Scholar
  61. Stucchi, N. und Viviani, P. (1993). Cerebral dominance and asynchrony between bimanual 2-D movements. Journal ofExperimental Psychology: Human Perception and Performance, 19, 1200–1220.CrossRefGoogle Scholar
  62. Swanton, M.T. und Gogel, W.C. (1986). Perceived size and motion in depth from optical expansion. Perception und Psychophysics, 39, 309–326.CrossRefGoogle Scholar
  63. Terzuolo, C.A. und Viviani, P. (1980). Determinants and characteristics of motor patterns used for typing. Neuroscience, 5, 1085–1103.PubMedCrossRefGoogle Scholar
  64. Thomassen, AJ.W.M., und Teulings, H.-L. (1985). Size and shape in handwriting: Exploring spatio-temporal relationships at different levels. In: J.A. Michon und J.L. Jackson (Eds.), Time, mind, and behavior. Berlin: Springer, pp. 253–263.CrossRefGoogle Scholar
  65. Todd, J.T. (1981). Visual information about moving objects. Journal of Erperimental Psychology: Human Perception and Performance, 7, 795–810.CrossRefGoogle Scholar
  66. Tresilian, J.R. (1990). Perceptual information for the timing of interceptive action. Perception, 19, 223–239.PubMedCrossRefGoogle Scholar
  67. Tresilian, J.R. (1991). Empirical and theoretical issues in the perception of time to contact Journal of Experimental Psychology: Human Perception and Performance, 17, 865–876.PubMedCrossRefGoogle Scholar
  68. Tresilian, J.R. (1994a). Approximate information sources and perceptual variables in interceptive timing. Journal ofExperimental Psychology: Human Perception and Performance, 20, 154–173.CrossRefGoogle Scholar
  69. Tresilian, J.R. (1994b). Perceptual and motor processes in interceptive timing. Human Movement Science, 13, 335–373.CrossRefGoogle Scholar
  70. Tresilian, I.R. (1995). Perceptual and cognitive processes in time-to-contact estimation: Analysis of prediction-motion and relative judgement tasks. Perception und Psychophysics (in press).Google Scholar
  71. Viviani, P. (1986). Do units of motor action really exist? In: H. Heuer und C. Fromm (Eds.), Generation and modulation of action patterns. Berlin: Springer, pp. 201–216.Google Scholar
  72. Viviani, P., Canrpadelli, P., und Mounoud, P. (1987). Visuo-manual pursuit tracking of human two-dimensional movements. Journal of Experimental Psychology: Human Perception and Performance, 13, 62–78.CrossRefGoogle Scholar
  73. Viviani, P. und Schneider, R. (1991). A developmental study of the relation between geometry and kinematics in drawing movements. Journal of Experimental Psychology: Human Perception and Performance, 17, 198–218.PubMedCrossRefGoogle Scholar
  74. Viviani, P. und Terzuolo, C.A. (1982). Trajectory determines movement dynamics. Neuroscience, 7, 431–437.Google Scholar
  75. Vorberg, D. und Wing, AM. (1993). Modelle Mr Variabilität und Abhängigkeit bei der zeitlichen Steuerung In: H. Heuer und S.W. Keele (Eds.), Enzyklopddie der Psychologie C II 3: Psychomotorik. Gottingen: Hogrefe, pp. 223–320.Google Scholar
  76. Wachholder, K. und Altenburger, H. (1926). Beiträge zur Physiologie der willkOrlichen Bewegung. DL Mitteilung. Fortlaufende Hirt-und Herbewegungen. Pflegers Archiv für die gesamte Physiologie, 214, 625–641.Google Scholar
  77. Wann, J., Nimmo-Smith, 1, und Wing, AM. (1988). Relation between velocity and curvature in movement: Equivalence and divergence between a power law and a minimum jerk model. Journal of Experimental Psychology: Human Perception and Performance, 14, 622–637.PubMedCrossRefGoogle Scholar
  78. Warren, N. und Clark, B. (1937). Blocking in mental and motor tasks during a 65-hour vigil. Journal of Experimental Psychology, 21, 97–105.Google Scholar
  79. Wing, AM. (1980). The long and short of timing in response sequences. In: G.E. Stelmach und J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland, pp. 469–486.CrossRefGoogle Scholar
  80. Wing, AM. und Kristofferson, AB. (1973a). The timing of interresponse intervals. Perception und Psychophysics, 13, 455–460.CrossRefGoogle Scholar
  81. Wing. A.41. und Kristofferson, AB. (1973b). Response delays and the timing of discrete motor responses. Perception und Psychophysics, 14, 5–12.CrossRefGoogle Scholar
  82. Wulf, G. und Schmidt, R.A. (1988). Variability in practice: Facilitation in retention and transfer through schema formation or context effects?Journal ofMotor Behavior, 20, 133–149.PubMedGoogle Scholar
  83. Young, D.E. und Schmidt,RA. (1990). Units of motor behavior: Modifications with practice and feedback. In: M. Jeannerod (Ed.), Attention and performanceXIII. Hillsdale,N.J.: Erlbaum, pp. 763–795.Google Scholar
  84. Zelaznik, H.N., Schmidt, RA., und Olden, C.C.A.M. (1986). Kinematic properties of rapid aimed hand movements. Journal ofMotor Behavior, 18, 353–372Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • H. Heuer
    • 1
  1. 1.Institut für ArbeitsphysiologieUniversität DortmundDortmundGermany

Personalised recommendations