Skip to main content

New insights into the kinetic resistance to anticancer agents

  • Chapter
  • 89 Accesses

Abstract

Kinetic resistance plays a major role in the failure of chemotherapy towards many solid tumors. Kinetic resistance to cytotoxic drugs can be reproduced in vitro by growing the cells as multicellular spheroids (Multicellular Resistance) or as hyperconfluent cultures (Confluence-Dependent Resistance). Recent findings on the cell cycle regulation have permitted a better understanding why cancer cells which arrest in long quiescent phases are poorly sensitive to cell-cycle specific anticancer drugs. Two cyclin-dependent kinase inhibitors (CDKI) seem particularly involved in the cell cycle arrest at the G1 to S transition checkpoint: the p53-dependent p21cip1 protein which is activated by DNA damage and the p27kip1 which is a mediator of the contact inhibition signal. Cell quiescence could alter drug-induced apoptosis which is partly dependent on an active progression in the cell cycle and which is facilitated by overexpression of oncogenes such as c-Myc or cyclins. Investigations are yet necessary to determine the influence of the cell cycle on the balance between antagonizing (bc1-2, bcl-X L ...) or stimulating (Bax, Bcl-X s , Fas...) factors in chemotherapy-induced apoptosis. Quiescent cells could also be protected from toxic agents by an enhanced expression of stress proteins, such as HSP27 which is induced by confluence. New strategies are required to circumvent kinetic resistance of solid tumors: adequate choice of anticancer agents whose activity is not altered by quiescence (radiation, cisplatin), recruitment from G1 to S/G2 phases by cell pretreatment with alkylating drugs or attenuation of CDKI activity by specific inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldie JH and Coldman AJ (1979) A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63: 1727–33.

    PubMed  CAS  Google Scholar 

  2. Riordan JR and Ling V (1985) Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther 28: 51–75.

    Article  PubMed  CAS  Google Scholar 

  3. Woodhouse JR and Ferry D (1995) The genetic basis of resistance to cancer chemotherapy. Ann Med 27: 157–167.

    Article  PubMed  CAS  Google Scholar 

  4. De Vita V (1983) The relationship between tumor mass and resistance to chemotherapy. Cancer 51: 1209–20.

    Article  Google Scholar 

  5. Vukovic V and Tannock IF (1997) Influence of low pH on cytotoxicity of placlitaxel, mitoxantrone and topotecan. Br J Cancer 75: 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  6. Valeriote F and Van Putten L (1975) Proliferation-dependent cytotoxicity of anticancer agents: a review. Cancer Res 3: 2619–30.

    Google Scholar 

  7. Dimanche-Boitrel MT, Garrido C and Chauffert B (1993) Kinetic resistance to anticancer agents. Cytotechnology 12: 347–356.

    Article  PubMed  CAS  Google Scholar 

  8. Liu LF (1989) DNA topoisomerase poisons as anticancer drugs. Ann Rev Biochem 58: 351–375.

    Article  PubMed  CAS  Google Scholar 

  9. Solary E, Bertrand R and Pommier Y (1994) Apoptosis induced by DNA topoisomerase I and II inhibitors in human leukemic HL-60 cells. Leukemia and Lymphoma 15: 21–32.

    Article  PubMed  CAS  Google Scholar 

  10. Donaldson KL, Goolsby GL and Wahl AF (1994) Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer 57: 847–855.

    Article  PubMed  CAS  Google Scholar 

  11. Tannock IF (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62: 1117–1133.

    PubMed  CAS  Google Scholar 

  12. Tannock IF (1994) Principles of cell proliferation: cell kinetics, In Kirkwood, JM, Lotze MT and Yasko JM (eds) Current Cancer Therapeutics. pp. 3–13. Princeton Academic Press, Princeton, New Jersey.

    Google Scholar 

  13. Hartwell LH and Kastan MB (1994) Cell cycle control and cancer. Science 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  14. Morgan DO (1995) Principles of CDK regulation. Nature 374: 131–134.

    Article  PubMed  CAS  Google Scholar 

  15. Sherr CJ and Roberts JM (1995) Inhibitors of mammalians GI cyclin-dependent kinases. Genes Dev. 9: 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg RA (1996) E2F and cell proliferation: a world turned upside down Cell 85: 457–459.

    CAS  Google Scholar 

  17. Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16: 373–384.

    Article  PubMed  CAS  Google Scholar 

  18. Goldwasser F, Shimizu T, Jackman J, Hoki Y, O’Connor PM, Kohn KW and Pommier Y (1996) Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon cancer cells. Cancer Res 56: 4430–4437.

    PubMed  CAS  Google Scholar 

  19. D’Arpa P, Beardmore C and Liu LF (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50: 6919–6924.

    PubMed  Google Scholar 

  20. Paulovich AG, Toczyski DP and Hartwell LH (1997) When checkpoints fail. Cell 88: 315–321.

    Article  PubMed  CAS  Google Scholar 

  21. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Google Scholar 

  22. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R and Harris CC (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acid Res 22: 3551–3555.

    PubMed  CAS  Google Scholar 

  23. Mc Gowan CH and Russel P (1993) Human Weel kinase inhibits cell division by phosphorylating p34cdc2 exclusively on tyr15. EMBO J 12: 75–85.

    CAS  Google Scholar 

  24. Konopa J (1988) G2 Block induced by DNA crosslinking agents and its possible consequences. Biochem Pharmacol 37: 2303–2309.

    Article  PubMed  CAS  Google Scholar 

  25. Russell KJ, Wiens LW, Demers GW, Galloway DA, Pion SE and Groudine M (1995) Abrogation of the G2 checkpoint results in different radiosensitization of G1-checkpointdeficient and G1-checkpoint competent cells. Cancer Res 55: 1639–1642.

    PubMed  CAS  Google Scholar 

  26. Dubrez L, Goldwasser F, Genne P, Pommier Y and Solary E (1995) The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia 9: 1013–1024.

    PubMed  CAS  Google Scholar 

  27. Graeber AJ, Osmanian C, Jack T, Housman DE, Koch CJ, Lowe SW and Graccia At (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88–91.

    Article  PubMed  CAS  Google Scholar 

  28. Ucker DS (1991) Death by suicide: one way to go in mammalian cell development. New Biologist 3: 103–109.

    PubMed  CAS  Google Scholar 

  29. Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH and Earnshaw WC (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathway during apoptotic execution. Proc Natl Acad Sci USA 92: 9042–9046.

    Article  PubMed  CAS  Google Scholar 

  30. Evans DL, Tilby M and Dice C (1994) Differential sensitivity to the induction of apoptosis by cisplatin in proliferating and quiescent immature rat thymocytes is independent of the level of drug accumulation and DNA adduct formation. Cancer Res 54: 1596–1603.

    PubMed  CAS  Google Scholar 

  31. Chen G, Shi L, Lichtfield DW and Greenberg AH (1995) Rescue from granzyme B-induced apoptosis by Wee kinase. J Exp Med 181: 2295–2300.

    Article  PubMed  CAS  Google Scholar 

  32. Lahti JM (1995) PILSTRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15: l-11.

    PubMed  CAS  Google Scholar 

  33. Shimizu T, O’Connor PM, Kohn KW and Pommier Y (1995) Unscheduled activation of cyclinB 1/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res 55: 228–231.

    PubMed  CAS  Google Scholar 

  34. Meikrantz W, Gisselbrecht S, Tam S and Schlegel R (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 91: 3754–3758.

    Article  PubMed  CAS  Google Scholar 

  35. Yonish Rouach E (1993) P53-mediated cell death: relationship to cell cycle control. Mol Cell Biol 13: 1415–1423.

    PubMed  CAS  Google Scholar 

  36. White E, Cipriani R, Sabbatini P and Denton A (1991) Adenovirus E 1B 19-kDa protein overcomes the cytotoxicity of El A proteins. J Virol 65: 2968–2978.

    PubMed  CAS  Google Scholar 

  37. Fanidi A, Harrington E and Evan G (1992) Cooperative interaction between c-myc and bel-2 proto-oncogenes. Nature 359: 554–556.

    Article  PubMed  CAS  Google Scholar 

  38. Evan GI (1995) Apoptosis and the cell cycle. Curr Opin Cell Biol 7: 825–834.

    Article  PubMed  CAS  Google Scholar 

  39. Israel MA (1997) Optimizing cytotoxic responses in the absence of significant apoptosis. ASCO Education Book Spring 3–6.

    Google Scholar 

  40. Olive PL and Durand RE (1994) Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev 13: 121–138.

    Article  PubMed  CAS  Google Scholar 

  41. Kobayashi H, Man S, Kapitain SJ, Teicher BA and Kerbel RS (1993) Acquired multicellular resistance to alkylating agents in cancer. Proc Natl Acad Sci USA 90: 3294–3298.

    Article  PubMed  CAS  Google Scholar 

  42. Dimanche-Boitrel M-T, Pelletier H, Genne P, Petit JM, Le Grimellec C, Canal P, Ardiet C, Bastian G and Chauffert B (1992) Confluence-dependent resistance in human colon cancer cells: Role of reduced drug accumulation and low intrinsic chemosensitivity of resting cells. Int J Cancer 50: 677–682.

    Article  PubMed  CAS  Google Scholar 

  43. Kerbel RS (1994) Impact of multicellular resistance on the survival of solid tumors, including micrometastases.Lnvasion Metastasis 14: 50–60.

    Google Scholar 

  44. St Croix BS, Kapitain S, Sheehan C, Graham CH and Kerbel RS (1996) Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J Natl Cancer Inst 88: 1285–1296.

    Article  CAS  Google Scholar 

  45. Nakayama K (1996) Mice lacking p27(Kip1) display increased body size. multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell 85: 707–720.

    Article  PubMed  CAS  Google Scholar 

  46. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF and Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685.

    Google Scholar 

  47. Porter P, Malone KE, Haegerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR and Roberts JM (1997) Expression of cell-cycle regulator p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med 3: 222–225.

    Article  PubMed  CAS  Google Scholar 

  48. St Croix BS, Florenes VA, Rak JW, Flanangan M, Bhattacharya N, Slingerland JM and Kerbel RS (1996) Impact of the cyclin-dependent kinase inhibitor p27Kip I on resistance of tumor cells to anticancer agents. Nature Med 2: 1204–1210.

    Article  PubMed  CAS  Google Scholar 

  49. Bates RC, Buret A, van Helden DF, Horton MA and Burns GF (1994) Apoptosis induced by inhibition of intercellular contact.J Cell Biol 125: 403–415.

    CAS  Google Scholar 

  50. Boudreau N, Sympson CJ, Werb Z and Bissel MJ (1995) Suppression of ICE and apoptosis in mammary cells by extracellular matrix. Science 267: 891–893.

    Article  PubMed  CAS  Google Scholar 

  51. Day ML, Foster RG. Day KC, Zhao X, Humphrey P, Swanson P, Postigo AA, Zhang SH and Dean DC (1997) Cell anchorage regulates apoptosis through the retinoblastoma tumor suppressor/E2F pathway. J Biol Chem 272: 8125–8128.

    Article  PubMed  CAS  Google Scholar 

  52. Koyama H, Raines EW, Bornfeldt KE, Roberts JM and Ross R (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of cdk2 inhibitors. Cell 87: 1069–1078.

    Article  PubMed  CAS  Google Scholar 

  53. Meredith JE and Schwartz MA (1997) Integrins, adhesion and apoptosis. Trends Cell Biol 7: 146–150.

    Article  PubMed  CAS  Google Scholar 

  54. Meredith JE, Fazeli B and Schwartz MA (1993) The extra-cellular matrix as a cell survival factor. Mol Biol Cell 4: 953–961.

    PubMed  CAS  Google Scholar 

  55. Rak J, Mitsuhashi Y, Erdos V, Huang S-n, Filmus J and Kerbel RS (1995) Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-H-ras oncogene expression. J Cell Biol 131: 1587–1598.

    Article  PubMed  CAS  Google Scholar 

  56. Kroemer G (1997) The protooncogene bel-2 and its role in regulating apoptosis. Nature Med 3: 614–620.

    Article  PubMed  CAS  Google Scholar 

  57. Dole MG, Jasty R, Cooper MJ, Thompson CB, Nunez G and Castle VP (1995) Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55: 2576–2582.

    PubMed  CAS  Google Scholar 

  58. Strobel T, Swanson L, Korsmeyer S and Cannistra SA (1996) BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc natl Acad Sci USA 93: 1409414099.

    Google Scholar 

  59. Jacobson MD, Burne JF and Raff MC (1994) Programmed cell death and Bel-2 protection in the absence of a nucleus. EMBO J 13: 1899–1910.

    PubMed  CAS  Google Scholar 

  60. Micheau O, Solary E, Hammann, Martin F and DimancheBoitrel MT (1997) Sensitization of cancer cells treated with cytotoxic drugs to Fas-mediated cytotoxicity. J Natl Cancer Inst 89: 783–789.

    Article  PubMed  CAS  Google Scholar 

  61. Newmeyer DD, Farschon DM and Reed JC (1994) Cell-free apoptosis in Xenopus egg extracts: inhibition by Bel-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79: 353–364.

    Article  PubMed  CAS  Google Scholar 

  62. Campos L, Rouault JP. Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP and Guyotat D (1993) High expression of Bel-2 protein in acute myeloblastic leukemia cells is associated with poor response to chemotherapy. Blood 81: 3091–3096.

    Google Scholar 

  63. Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM. Niskanen E, Norling S and Reed JC (1995) Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55: 4471–4478.

    Google Scholar 

  64. Simonian PL, Grillot DAM, Merino R and Nunez G (1996) Bax can antagonize Bel-XL during etoposide and cisplatininduced cell death independently of its heterodimerization with Bcl-XL. J Biol Chem 271: 22764–22772.

    Article  PubMed  CAS  Google Scholar 

  65. Yin DX and Schimke RT (1995) BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res 55: 4922–4928.

    PubMed  CAS  Google Scholar 

  66. Li GC and Hahn GM (1978) Ethanol-induced tolerance to heat and to adriamycin. Nature 274: 699–701.

    Article  PubMed  CAS  Google Scholar 

  67. Wallner K and Li GC (1986) Adriamycin resistance and radiation response in Chinese hamster fibroblasts. Int J Radiat Oncol Biol Phys 12: 829–833.

    Article  PubMed  CAS  Google Scholar 

  68. Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ and McGuire WL (1992) Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52: 3648–3654.

    Google Scholar 

  69. Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK and Fuqua SAW (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53: 4443–4448.

    PubMed  CAS  Google Scholar 

  70. Samali A and Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223: 163–170.

    Article  PubMed  CAS  Google Scholar 

  71. Garrido C, Mehlen P, Fromentin A, Hammann A, Assem M, Arrigo AP and Chauffert B (1996) Inconstant association between 27-kDa heat shock protein (HSP27)content and doxorubicin resistance in human colon cancer cells. Eur J Biochem 237: 653–659.

    Article  PubMed  CAS  Google Scholar 

  72. Richards EH, Hickey E, Weber L and Master JR (1996) Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 56: 2446–2451.

    PubMed  CAS  Google Scholar 

  73. Hunt J, Gaetan R, Lambert H, Chretien P and Landry J (1991) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res 51: 5245–5252.

    Google Scholar 

  74. Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B and Mehlen P (1997) HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57, 2661–2667.

    PubMed  CAS  Google Scholar 

  75. Pelletier H, Millot JM, Chauffert B, Manfait M, Genne P and Martin F (1990) Mechanisms of resistance of confluent human and rat colon cancer cells to anthracyclines: alteration of drug passive diffusion. Cancer Res 50: 6626–6631.

    PubMed  CAS  Google Scholar 

  76. Frankel A, Buckman R and Kerbel RS (1997) Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res 57: 2388–2393.

    PubMed  CAS  Google Scholar 

  77. Darzynkiewicz Z (1995) Apoptosis in antitumor strategies: modulation of cell cycle or differentiation. J Cell Biochem 58: 151–159.

    Article  PubMed  CAS  Google Scholar 

  78. Garrido C, Chauffert B, Pinard D, Tibaut F, Genne P, Assem M and Dimanche-Boitrel MT (1995) Circumvention of confluence-dependent resistance in a human multidrug resistant colon cancer cell line. Int J Cancer 61: 873–879.

    Article  PubMed  CAS  Google Scholar 

  79. Toffoli G, Corona G, Gigante M and Boiocchi M (1996) Inhibition of Pgp activity and cell cycle-dependent chemosensitivity to doxorubicin in the multidrug-resistant LoVo colon cancer cell line. Eur J Cancer 32: 1591–1597.

    Article  Google Scholar 

  80. Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA and O’Connor PM (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88: 956–965.

    Article  PubMed  CAS  Google Scholar 

  81. Powell SN, DeFrank JS, Conell P, Eogan M, Preffer F, Dombkowski D, Tang W and Friend S (1995). Differential sensitization pf p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2. delay. Cancer Res 55: 1643–1648.

    PubMed  CAS  Google Scholar 

  82. Shinomiya N, Takemura T, Iwamoto K and Rokuntanda M (1997) Caffeine induces S-phase apoptosis in cis- diamminedichloroplatinum-treated cells, whereas cis-diamminedichloroplatinum induces a block in G2/M. Cytometry 27: 365–373.

    Article  PubMed  CAS  Google Scholar 

  83. Fan S, Smith ML, Rivet DJ, Duba D, Zhan Q, Kohn KW, Fornace Ai and O’Connor PM (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxyfilline. Cancer Res 55: 1649–1654.

    PubMed  CAS  Google Scholar 

  84. Zhang W, Kornblau SM, Kobayashi T, Gambel A, Claxton D and Deisseroth AB (1995) High levels of constitutive WAFI/CipI protein are associated with chemoresistance in acute myelogenous leukemia. Clin Cancer Res I: 1051–1057.

    Google Scholar 

  85. Vikhanskaya F, D’Incalci M and Broggini M (1995) Decreased cytotoxic effects of doxorubicin in a human ovarian cancer-cell line expressing wild-type p53 and WAFI/CIP1 genes. lot J Cancer 61: 397–401.

    CAS  Google Scholar 

  86. Poluha W, Poluha DK, Chang B, Crosbie NE, Schonhoff CM, Kilpatrick DL and Ross AH (1996) The cyclin-dependent kinase inhibitor p21 WAFI is required for survival of differentiating neuroblastoma cells. Mol Cell Biol 16: 1335–1341.

    PubMed  CAS  Google Scholar 

  87. Waldman T, Lengauer C, Kinzler KW and Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

    Article  PubMed  CAS  Google Scholar 

  88. Wang J and Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273: 359–361.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chauffert, B. et al. (1998). New insights into the kinetic resistance to anticancer agents. In: Clynes, M. (eds) Multiple Drug Resistance in Cancer 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2374-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2374-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5108-0

  • Online ISBN: 978-94-017-2374-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics