Skip to main content

Molecular Markers for the Genetic Analysis of Apomixis

  • Chapter
Molecular Techniques in Crop Improvement

Abstract

Most flowering plants reproduce sexually through seeds. A zygote is formed by fusion of reduced female and male gametes (amphimixis) and develops into an embryo. However, some angiosperms commonly reproduce through seeds having an embryo, which is formed without reduction of the chromosome number nor fertilisation, by a process called apomixis (Nogler, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asker, S.E., and Jerling, L. (1992). Apomixis in Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Bacchi, O. (1943). Cytological observations in Citrus. III. Megasporogenesis, fertilization and polyembryony. Bot. Gaz. 105: 221–225.

    Article  Google Scholar 

  • Bashaw, E.C. (1975). Problems and possibilities of apomixis in the improvement of tropical forage grasses, in Doll, E.C. and Mott, G.O. (eds.), Topical forages in livestock production systems. Spec. Pub. 24. American Society of Agronomy. Madison, WI. p. 23–30.

    Google Scholar 

  • Bicknell, R.A., Borst, N.K., and Koltunow, A.M. (2000). Monogenic inheritance of apomixis in two Hieracium species with distinc developmental mechanisms. Heredity 84: 227–237.

    Article  Google Scholar 

  • Cameron, J. W., and Garber, M. J. (1986). Identical-Twin Hybrids of Citrus x Poncirus from strictly sexual seed parents. Amer. J. Bot. 55: 199–205.

    Article  Google Scholar 

  • Cameron, J. W., and Soost, R (1979). Sexual K and Nucellar Embryony in F1 Hybrids and Advanced Crosses of Citrus with Poncirus. J. Amer. Soc. Hort. Sci. 104: 408–410.

    Google Scholar 

  • Carman, J.G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61: 51–94.

    Article  Google Scholar 

  • Clausen, J. (1961). Introgression facilitated by apomixis in polyploid poas. Euphytica 10: 87–94.

    Article  Google Scholar 

  • Chen, L., Miyazaki C., Kojima, A., Saito, A., and Adachi, T. (1999). Isolation and characterization of a gene expressed during early embryo sac development in apomictic Guinea Grass (Panicum maximun), J. Plant Physiol. 154: 55–62.

    Article  CAS  Google Scholar 

  • Esan, E.B. (1973) A detailed study of adventive embryogenesis in the Rutaceae. PhD Dissertation. Univ. California, Riverside.

    Google Scholar 

  • Fryxell, P. A. (1957). Mode of reproduction of higher plants. Botan. Rev. 23: 132–233.

    Article  Google Scholar 

  • Furusato, K. (1954). Studies on polyembryony in citrus. Annual Rept. Natl. Inst. Genet, Japan. 4.

    Google Scholar 

  • Garcia, R., Asíns, M.J., Forner, J., and Carbonell, E.A. (1999). Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor. Appl. Genet. 99: 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Guerin, J., Rossel, J.B., Robert, S, Tsuchiya, T, and Koltunow, A. (2000). A DEFICIENS homologue is down-regulated during apomict initiation in ovules of Hieracium. Planta 210: 914–920.

    Article  CAS  Google Scholar 

  • Hanna, W.W., and Bashaw, E.C. (1987). Apomixis: its identification and use in plant breeding. Crop Science 27: 1136–1139.

    Article  Google Scholar 

  • Iwamasa, M., Ueno, I., and Nishiura, M. (1967). Inheritance of nucellar embryony in Citrus. Bull. Hort. Sta. Japan ser. B. n° 7.

    Google Scholar 

  • Kindiger, B., Sokolov, V., and Khatypova, I.V. (1996a). Evaluation of apomictic reproduction in a set of 39 chromosome maize-Tripsacum backcross hybrids. Crop Science 36: 1108–1113.

    Article  Google Scholar 

  • Kindiger, B., Bai, D., and Sokolov, V. (1996b). Assignment of a gene(s) conferring apomixis in Tripsacum to a chromosome arm: cytological and molecular evidence. Genome 39: 1133–1141.

    Article  PubMed  CAS  Google Scholar 

  • Koltunow, A.M., Bicknell, R.A., and Chaudhury, A.M. (1995). Apomixis: Molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108: 1343–1352.

    Google Scholar 

  • Koltunow, A.M. (1993). Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell 5: 1425–1437.

    PubMed  Google Scholar 

  • Lakshmanan, K.K., and Ambegaokar, K.K. (1984). Polyembryony, in Jhori, B.M. (ed.), Embryology of Angiosperms, Springer-Verlag, pp. 445–474.

    Google Scholar 

  • Leblanc, O., Grimanelli, D., Gonzalez-de Leon, and Savidan, Y. (1995a). Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor. Appl. Genet. 90: 1198–1203.

    Article  CAS  Google Scholar 

  • Leblanc, O., Peel, M.D., Carman, J.G., and Savidan, Y. (1995b). Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am. J. Bot. 82: 57–63.

    Article  Google Scholar 

  • Luo, M., Bilodeal, P., Koltunow, A., Dennis, E.S., Peacock, W.J., and Chaudhury, A.M. (1999). Genes controlling fertilization-independent seed development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 96:, 296–301.

    Google Scholar 

  • Mazzucato, A., Falcinelli, M., and Veronesi, F. (1996). Evolution and adaptedness in a facultatively apomictic grass, Poa pratensis L. Euphytica 92: 13–19.

    Article  Google Scholar 

  • Minessey, F.A. (1953). Effect of rootstock on polyembryony in Citrus. Alexandria J. Agr. Res. 1: 83–89.

    Google Scholar 

  • Nogler, G.A. (1984). Gametophytic apomixis, in Mori B. M. (ed.), Embryology of Angiosperms. Springer-Verlag Berlin, pp. 475–518.

    Chapter  Google Scholar 

  • Ozias-Akins, P., Roche, D., and Hanna, W.W. (1998). Tight clustering and hemizygosity of apomixis-linked in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc. Natl. Acad. Sci. USA 95: 5127–5132.

    Article  PubMed  CAS  Google Scholar 

  • Parlevliet, J.E., and Cameron, J.W. (1959). Evidence on the inheritance of nucellar embryony in Citrus. Proc. Amer. Soc. Hort. Sci. 74: 252–260.

    Google Scholar 

  • Pessino, S.C., Ortiz, J.P.A., Leblanc, O., Valle, C.B., Evans, C., and Hayward, MI. (1997). Identification of a maize linkage group related to apomixis in Brachiaria. Theor. Appl. Genet. 94: 439–444.

    Article  CAS  Google Scholar 

  • Roche, D., Cong, P., Chen, Z., Hanna, W.W, Gustine, D.L., Sherwood, R.T., and Ozias-Akins, P. (1999). An apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. The Plant Journal 19: 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Taliafeno, C. M., and Bashaw, E. C. (1966). Inheritance and control of obligate apomixix in breeding buffelgrass. Crop Sci. 6: 473–476.

    Article  Google Scholar 

  • Tisserat, B., and Murashige, T. (1977). Effects of ethephon, ethylene, and 2,4dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiol. 60: 437–439.

    Article  PubMed  CAS  Google Scholar 

  • Tisserat, B., Esan, E.B., and Murashige, T. (1978). Somatic embryogenesis in angiosperms, Horticultural Reviews 1–79.

    Google Scholar 

  • Vielle Calzada, J.P.V., Crane, C.F., and Stelly, D.M. (1996). Apomixis: the asexual revolution. Science 274: 1322–1323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asins, M.J., Garcia, M.R., Ruiz, C., Carbonell, E.A. (2002). Molecular Markers for the Genetic Analysis of Apomixis. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2356-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2356-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5982-6

  • Online ISBN: 978-94-017-2356-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics