Control of Lignin Biosynthesis

  • J. H. Christensen
  • M. Baucher
  • A. O’Connell
  • M. Van Montagu
  • W. Boerjan
Part of the Forestry Sciences book series (FOSC, volume 64)


The ever increasing worldwide use of forest tree products, which coincides with the diminishing of natural forests, necessitates programs for efficient tree farming. For this purpose, there is a demand for accelerated tree improvement strategies that aim at developing trees as wood-producing crops with both improved trunk performance and specific exploitation characteristics. Objectives of primary importance to the forestry industry are the genetic control of traits such as growth, adaptation to environmental stress, disease resistance, wood uniformity, specific gravity and fiber quality. With classical breeding these demands will not be fulfilled within a reasonable time span because of the long generation time of trees. To meet these needs, forest trees are anticipated to become major targets for genetic engineering and molecular breeding in the coming years. Biotechnology now provides the necessary tools to solve many of the problems faced by conventional tree breeding programs, for example by the establishment of genetic maps of forest trees species such as poplar (Bradshaw et al., 1994) and the generation and potential use of DNA marker-assisted selection in breeding programs (e.g., Cervera et al., 1996). Furthermore, plant genetic transformation has now become a common technique for the introduction of novel traits into a wide range of tree species both for basic research and for applied purposes.


Lignin Content Kraft Pulp Lignin Biosynthesis Sinapic Acid Cinnamyl Alcohol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, U.P. and Atalla, R.H. (1986). In-situ Raman micmprobc studies nl plain cell walls macromolecular organization and compositional variability in the secondary wall of/ir. a niai land (Mill.) I1.S.P. Planta 169. 325–332.Google Scholar
  2. Allina, S.M., Pri-Hadash, A., Theilmann, D.A., Ellis, B.E., and Douglas, C’..I. I I 995). 4-(’oum uate:coenzyme A ligase in hybrid poplar. Plant Physiol. 116, 743–754.Google Scholar
  3. Allona, 1., Quinn, M., Shoop, E., Swope, K., St. Cyr, S., Carlis, J., Riedl, J., Retzel, Ii., (’ampbell, M.M., Sederoff, R., and Whetten, R.W. (1998). Analysis of xylem formation in pine by CDNA sequencing. Proc. Natl. Acad. Sci. USA 95, 9693–9698.Google Scholar
  4. Aloni, R. (1982). Role of cytokinin in differentiation of secondary xylem fibers. Plant Physiol. 70, 1631–1633.PubMedGoogle Scholar
  5. Aloni, R. (1987). Differentiation of vascular tissues. Ann. Rev. Plant Physiol. 38, 179–204.Google Scholar
  6. Aloni, R. (1989). Control of xylogenesis within the whole tree. Ann. Sci. For. 46, Supp., 267s - 272s.Google Scholar
  7. Aloni, R. (1993). The role of cytokinin in organised differentiation of vascular tissues. Aurt. J. Plant Physiol. 20, 601–608.Google Scholar
  8. Aloni, R. (1995). The induction of vascular tissues by auxin and cytokinin, in P.J. Davies (ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology, 2nd ed., Kluwer Academic Publisher, Dordrecht, pp. 531–546.Google Scholar
  9. Aloni, R., Tollier, M.T., and Monties, B. (1990). The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus blumei stems. Plant Physiol. 94, 1743–1747.PubMedGoogle Scholar
  10. Ander, P. (1993). Biopulping, biobleaching, and the use of enzymes in the pulp and paper industry. Tappi J. 25, 70–76.Google Scholar
  11. Andersen, M.B. (1993). Enhancement of peroxidase catalyzed oxidations, in K.G. Welinder, S.K. Rasmussen, C. Penel, and H. Greppin (eds.), Plant Peroxidases: Biochemistry and Physiology (Proceedings III International Symposium), University of Geneva, Genève, pp. 193–196.Google Scholar
  12. Angelini, R. and Federico, R. (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J. Plant Physiol. 135, 212–217.Google Scholar
  13. Angelini, R., Manes, F., and Federico, R. (1990). Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta 182, 89–96.Google Scholar
  14. Atalla, R.H. and Agarwal, U.P. (1985). Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 227, 636–638.PubMedGoogle Scholar
  15. Atanassova, R., Favet, N., Martz, F., Chabbert, B., Tollier, M.T., Monties, B., Fritig, B., and Legrand, M. (1995). Altered lignin composition in transgenic tobacco expressing 0-methyltransferase sequences in sense and antisense orientation. Plant J. 8, 465–477.Google Scholar
  16. Axegard, P., Jacobson, B., Ljunggren, S., and Nilvebrant, N.O. (1992). Bleaching of kraft pulps - a research perspective. Papier 46, V 16-V 25.Google Scholar
  17. Bao, W., O’Malley, D.M., Whetten, R., and Sederoff, R.R. (1993). A laccase associated with lignification in loblolly pine xylem. Science 260, 672–674.PubMedGoogle Scholar
  18. Bate, N.J., Orr, J., Ni, W., Meromi, A., Nadler-Hassar, T., Doemer, P.W., Dixon, R.A., Lamb, C.J., and Elkind, Y. (1994). Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 91, 7608–7612.PubMedGoogle Scholar
  19. Baucher, M., Monties, B., Van Montagu, M., and Boerjan, W. (1998). Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17, 125–197.Google Scholar
  20. Baucher, M., Chabbert, B., Pilate, G., Van Doorsselaere, J., Tollier, M.-T., Petit-Conil, M., Cornu, D., Monties, B., Van Montagu, M., Inzé, D., Jouanin, L., and Boerjan, W. (1996). Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar (Populus tremula x P. alba). Plant Physiol. 112, 1479–1490.Google Scholar
  21. Baucher, M., Bernard-Vailhé, M.A., Chabbert, B., Besle, J.-M., Opsomer, C., Van Montagu, M., and Botterman, J. (1999). Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the impact on lignin composition and digestibility. Plant Mol. Biol. 39, 437–447.PubMedGoogle Scholar
  22. Bernard Vailhé, M.A., Migné, C., Cornu, A., Maillot, M.P., Grenet, E., Besle, J.M., Atanassova, R., Mertz, F., and Legrand, M. (1996a). Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J. Sci. Food Agric. 72, 385–391.Google Scholar
  23. Bernard-Vailhé, M.-A., Cornu, A., Robert, D., Maillot, M.-P., and Besle, J.-M. (1996b). Cell wall degradability of transgenic tobacco sterns in relation to their chemical extraction and lignin quality. J. Agric. Food Chem. 44, 1164–1169.Google Scholar
  24. Biely, P., Vrsanskà, M., and Kucar, S. (1992). Identification and mode of action of endo-(l-4)-ß-xylanases. Xylans and Xylanases. Progress in Biotechnology 7, 81–95.Google Scholar
  25. Boerjan, W., Baucher, M., Chabbert, B., Petit-Conil, M., Leplé, J.-C., Pilate, G., Cornu, D., Monties, B., lnzé, D., Van Doorsselaere, J., Jouanin, L., Van Montagu, M., Tsai, C.-J., Podila, G.K., Joshi, C.P., and Chiang, V.L. (1997). Genetic modification of lignin biosynthesis in quaking aspen (Populus tremuloides) and poplar (Populos tremula x Populos alba), in N.B. Klopfenstein, Y.W. Chun, M.-S. Kim, and M.R. Ahuja (eds.), Micropropagation, Genetic Engineering, and Molecular Biology of Populos, (General Technical Report RMGTR-297), Rocky Mountain Forest and Range Experiment Station, Fort Collins, pp. 193–205.Google Scholar
  26. Bolwell, G.P., Butt, V.S., Davies, D.R., and Zimmerlin, A. (1995). The origin of the oxidative burst in plants. Free Rad. Res. 23, 517–532.Google Scholar
  27. Boudet, A.M., Lapierre, C., and Grima-Pettenati, J. (1995). Biochemistry and molecular biology of lignification. New Phytol. 129, 203–236.Google Scholar
  28. Bradshaw, H.D. Jr, Villar, M., Watson, B.D., Otto, K.G., Stewart, S., and Stettler, R.F. (1994). Molecular genetics of growth and development in Populus. Ill. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RA PD markers. Theor. Appl. Genet. 89, 167–178.Google Scholar
  29. Buchert, J., Carlsson, G., Viikari, L., and Strom, G. (1996). Surface characterization of unbleached kraft pulps by enzymatic peeling and esca. Holzforschung 50, 69–74.Google Scholar
  30. Buchert, J., Tenkanen, M., Kantelinen, A., and Viikari, L. (1994). Application of xylanases in the pulp and paper-industry. Bioresource Technology 50, 65–72.Google Scholar
  31. Bucholtz, D.L., Cantrell, R.P., Axtell, J.D., and Lechtenberg, V.L. (1980). Lignin biochemistry of normal and brown midrib mutant sorghum. J. Agric. Food Chem. 28, 1239–1241.Google Scholar
  32. Bugos, R.C., Chiang, V.L.C., and Campbell, W.H. (1991). cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol. Biol. 17, 1203–1215.Google Scholar
  33. Butland, S.L., Chow, M.L., and Ellis, B.E. (1998). A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures. Plant Mol. Biol. 37, 15–24.PubMedGoogle Scholar
  34. Caliskan, M. and Cuming, A.C. (1998). Spatial specificity of Hp, -generating oxalate oxidase gene expression during wheat embryo germination. Plant J. 15, 165–171.PubMedGoogle Scholar
  35. Campbell, M.M., Whetten, R.W., and Sederoff, R.R. (1995). MYB homologues in loblolly pine xylem. Plant Physiol. 108, Supp., 28 [#56].Google Scholar
  36. Campbell, M.M. and Sederoff, R.R. (1996). Variation in lignin content and composition. Mechanisms of control and implications for the genetic improvement of plants. Plant Physiol. 110, 3–13.PubMedGoogle Scholar
  37. Cervera, M.-T., Gusmâo, J., Steenackers, M., Peleman, J., Storme, V., Vanden Broeck, A., Van Montagu, M., and Boerjan, W. (1996). Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor. Appl. Genet. 93, 733–737.Google Scholar
  38. Chapple, C.C.S., Vogt, T., Ellis, B.E., and Somerville, C.R. (1992). An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4, 1413–1424.PubMedGoogle Scholar
  39. Chen, C., Meyermans, H., Van Doorsselaere, J., Van Montagu, M., and Boerjan, W. (1998). A gene encoding caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) from Populos trichocarpa (Accession No. AJ223621) (PGR98–104). Plant Physiol. 117, 719.Google Scholar
  40. Chemey, D., Patterson, J., and Johnson, K. (1990). Digestibility and feeding value of pearl millet as influenced by the brown-midrib, low-lignin trait. J Anim. Sci. 68, 4345–4351.Google Scholar
  41. Christensen, J.H., Bauw, G., Welinder, K.G., Van Montagu, M., and Boerjan, W. (1998). Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 118, 125–135.PubMedGoogle Scholar
  42. Czaninski, Y., Sachet, R.M., and Catesson, A.M. (1993). Cytochemical localization of hydrogen peroxide in lignifying cell walls. Ann. Bot. 72, 547–550.Google Scholar
  43. De Melis, L.E., Brugliera, F., Pongracic, S., and Stevenson, T.W. (1998a). Isolation of a Eucalyptus globulus cDNA clone encoding cinnamyl alcohol dehydrogenase (Accession No. AF038561) (PGR 98–032). Plant Physiol. 116, 1191.Google Scholar
  44. De Melis, L.E., Brugliera, F., Pongracic, S., and Stevenson, T.W. (1998b). Isolation of a Eucalyptus globulus eDNA encoding caffeoyl-coenzyme A 3-O methyltransferase (Accession No. AF046122) (PGR 98–098). Plant Physiol. 117, 718.Google Scholar
  45. Dean, J.F.D. and Eriksson, K.-E. (1994). Laccase and the deposition of lignin in vascular plants. Holzforschung 48, 21–33.Google Scholar
  46. Dean, J.F.D., Sterjiades, R., and Eriksson, K.-E.L. (1994). Purification and characterization of an anionic peroxidase from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Physiol. Plant. 92, 233–240.Google Scholar
  47. Dean, J.F.D., LaFayette, P.R., Rugh, C.L., Merkle, S.A., and Eriksson, K.-E.L. (1996). The role of lactase in lignin biosynthesis. Abstract presented at the Keystone Meeting on Molecular and Cellular Biology on “The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology”, Tamarron (CO), March 15–21, 1996 (p. 6, [#006]).Google Scholar
  48. del Carmen Córdoba-Pedregosa, M., Gonzalez-Reyes, J.A., del Sagrario Cafiadillas, M., Navas, P., and Córdoba, F. (1996). Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol. 112, 1119–1 125.Google Scholar
  49. Denne, M.P. and Wilson, J.E. (1977). Some quantitative effects of indoleacetic acid on the wood production and tracheid dimensions of Picea. Planta 134, 223–228.Google Scholar
  50. Dharmawardhana, D.P., Ellis, B.E., and Carlson, J.E. (1995). A ß-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol. 107, 331–339.PubMedGoogle Scholar
  51. Dharmawardhana, D.P., Carlson, J., and Ellis, B. (1997). Towards manipulation of lignin monomer supply: cloning and heterologous expression of the gene encoding coniferin beta-glucosidase in Pinus contorta. Abstract presented at the Second International Wood Biotechnology Symposium, Canberra (Australia), 10–12 March, 1997, paper 19.Google Scholar
  52. Digby, J. and Wareing, P.F. (1966). The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann. Bot. 30, 539–549.Google Scholar
  53. Douglas, C. (1996). Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci. 1, 171–178.Google Scholar
  54. Driouich, A., Lainé, A.-C., Vian, B., and Faye, L. (1992). Characterization and localization of lactase forms in stem and cell cultures of sycamore. Plant J. 2, 13–24.Google Scholar
  55. Dumas, B., Van Doorsselaere, J., Gielen, J., Legrand, M., Fritig, B., Van Montagu, M., and Inzé, D. (1992). Nucleotide sequence of a complementary DNA encoding O-methyltransferase from poplar. Plant Physiol. 98, 796–797.PubMedGoogle Scholar
  56. Dumas, B., Freyssinet, G., and Pallett, K.E. (1995). Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol. 107, 1091–1096.PubMedGoogle Scholar
  57. Elkind, Y., Edwards, R., Mavandad, M., Hedrick, S.A., Ribak, O., Dixon, R.A., and Lamb, C.J. (1990). Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine anunonia-lyase gene. Proc. Natl. Acad. Sci. USA 87, 9057–9061.PubMedGoogle Scholar
  58. Ferrer, M.A., Pedreno, M.A., Munoz, R., and Ros Barceló, A. (1990). Oxidation of coniferyl alcohol by cell wall peroxidases at the expense of indole-3-acetic acid and Or A model for the lignification of plant cell walls in the absence of H2O,. FEBSLett. 276, 127–130.Google Scholar
  59. Feuillet, C., Boudet, A.M., and Grima-Pettenati, J. (1993). Nucleotide sequence of a cDNA encoding cinnamyl alcohol dehydrogenase from Eucalyptus. Plant Physiol. 103, 1447.Google Scholar
  60. Feuillet, C., Lauvergeat, V., Deswarte, C., Pilate, G., Boudet, A., and Grima-Pettenati, J. (1995). Tissue-and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol. Biol. 27, 651–667.PubMedGoogle Scholar
  61. Frahry, G. and Schopfer, P. (1998). Inhibition of O; reducing activity of horseradish peroxidase by diphenyleneiodonium. Phytochemistry 48, 223–227.PubMedGoogle Scholar
  62. Fridovich, I. (1963). The stimulation of horseradish peroxidase by nitrogenous ligands. J. Biol. Chem. 238, 3921–3927.PubMedGoogle Scholar
  63. Fujita, K., Kondo, R., Sakai, K., Kashino, Y., Nishida, T., and Takahara, Y. (1991). Biobleaching of kraft pulp using white rot-fungus IZU-154. Tappi J. 74, 123–127.Google Scholar
  64. Galliano, H., Cabané, M., Eckerskom, C., Lottspeich, F., Sandennann, H. Jr, and Ernst, D. (1993). Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol. Biol. 23, 145–156.PubMedGoogle Scholar
  65. Garcia-Mas, J., Messeguer, R., Arus, P., and Puigdomenech, P. (1995). The caffeic acid 0-methyltransferase from Prunus amygdalus (GenBank X83217) (PGR95–006). Plant Physiol. 108, 1341.Google Scholar
  66. Gazaryan, I.G. and Lagrimini, L.M. (1996). Tobacco anionic peroxidase overexpressed in transgenic plants: aerobic oxidation of indole-3-acetic acid. Phytochemisuy 42, 1271–1278.Google Scholar
  67. Ge, L. and Chiang, V.L. (1996). A full-length eDNA encoding trans-cinnamate 4-hydroxylase from developing xylem of Populus tremuloides (Accession number U47293). Plant Physiol. 112, 861.Google Scholar
  68. Goffner, D., Ranocha, P., McDougall, G., and Boudet, A.M. (1998). Biochemical characterization, molecular cloning and expression of lactases–a divergent gene family–in poplar. Abstract presented at the 8th International Cell Wall Meeting, Norwich (UK), September 1–5, 1998 (#1.30).Google Scholar
  69. Goldberg, R., Catesson, A.-M., and Czaninski, Y. (1981). Histochemical and biochemical characteristics of peroxidases involved in lignification processes of poplar. In Cell Walls ‘81 (Proceedings of the 2nd Cell Wall Meeting), D.G. Robinson, and H. Quader (Eds.). Stuttgart, Wissenschaftliche Verlagsgesellschaft, pp. 251–260.Google Scholar
  70. Grattapaglia, D. and Sederoff, R. (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 1121–1137.PubMedGoogle Scholar
  71. Grima-Pettenati, J., Feuillet, C., Goffner, D., Borderies, G., and Boudet, A.M. (1993). Molecular cloning and expression of a Eucalyptus gunnii eDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol. Biol. 21, 1085–1095.PubMedGoogle Scholar
  72. Gubler, F., Kalla, R., Roberts, J.K., and Jacobsen, J.V. (1995). Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pi a-amylase gene promoter. Plant Cell 7, 1879–1891.PubMedGoogle Scholar
  73. Gurdon, J.B., Mitchell, A., and Mahony, D. (1995). Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376, 520–521.PubMedGoogle Scholar
  74. Halliwell, B. (1978). Lignin synthesis: the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 140, 81–88.Google Scholar
  75. Halpin, C., Knight, M.E., Foxon, G.A., Campbell, M.M., Boudet, A.M., Boon, J.J., Chabbert, B., Tollier, M.-T., and Schuch, W. (1994). Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J. 6, 339–350.Google Scholar
  76. Hammel, K.E. (1995). Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ. Health Perspect. 5, 41–43.Google Scholar
  77. Hatakka, A. (1994). Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbial. Rev. 13, 125–135.Google Scholar
  78. Hauffe, K.D., Lee, S.P., Subramaniam, R., and Douglas, C.J. (1993). Combinatorial interactions between positive and negative cis-acting elements control spatial patterns of 4CL-1 expression in transgenic tobacco. Plant J. 4, 235–253.PubMedGoogle Scholar
  79. Hawkins, S., Samaj, J., Lauvergeat, V., Boudet, A., and Grima-Pettenati, J. (1997). Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol. 113, 321–325.PubMedGoogle Scholar
  80. Hayakawa, T., Nanto, K., Kawai, S., Katayama, Y., and Morohoshi, N. (1996). Molecular cloning and tissue-specific expression of two genes that encode caffeic acid O-methyltransferases from Populus kitakamiensis. Plant Sci. 113, 157–165.Google Scholar
  81. He, L. and Terashima, N. (1991). Formation and structure of lignin in monocotyledons. IV. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plants studied by ultraviolet microscopic spectroscopy. Holzforschung 45, 191–198.Google Scholar
  82. Hess, T. and Sachs, T. (1972). The influence of a mature leaf on xylem differentiation. New Phytol. 71, 903–914. Hibino, T., Shibata, D., Chen, J.-Q., and Higuchi, T. (1993). Cnnnamyl alcohol dehydrogenase from Aralia cordata:Google Scholar
  83. cloning of the cDNA and expression of the gene in lignified tissue. Plant Cell Physiol. 34 659–665.Google Scholar
  84. Hibino, T., Chen, J.-Q., Shibata, D., and Higuchi, T. (1994). Nucleotide sequence of a Eucalyptus botryoides gene encoding cinnamyl alcohol dehydrogenase. Plant Physiol. 104, 305–306.PubMedGoogle Scholar
  85. Hibino, T., Takabe, K., Kawazu, T., Shibata, D., and Higuchi, T. (1995). Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Biosci. Biotech. Biochem. 59, 929–931.Google Scholar
  86. Higuchi, T. (1985). Biosynthesis of lignin, in T. Higuchi (ed.), Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, pp. 141–160.Google Scholar
  87. Higuchi, T. Ito, T., Umezawa, T., Hibino, T., and Shibata, D. (1994). Red-brown color of lignified tissues of transgenic plants with antisense CAD gene: wine-red lignin from coniferyl aldehyde. J. Biotechnol. 37 151–158.Google Scholar
  88. Houtman, C.J. and Atalla, R.H. (1995). Cellulose-lignin interactions. A computational study. Plant Physiol. 107, 977–984.PubMedGoogle Scholar
  89. Hu, W.-J., Kawaoka, A., Tsai, C.-J., Lung, J., Osakabe, K., Ebinuma, H., and Chiang, V.L. (1998). Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc. Natl. Acad. Sci. USA 95, 5407–5412.PubMedGoogle Scholar
  90. Imberty, A., Goldberg, R., and Catesson, A.-M. (1985). Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta 164, 221–226.Google Scholar
  91. Iversen, T. and Wännström, S. (1986). Lignin-carbohydrate bond in a residual lignin isolated from pine kraft pulp. Holzforschung 40, 19–22.Google Scholar
  92. Jacobs, W.P. and Kaldewey, H. (1970). Polar movement of gibberellic acid through young Coleus petioles. Plant Physiol. 45, 539–541.PubMedGoogle Scholar
  93. Jacobsen, J.V. and Gubler, F. (1993). GARC and DNA-binding proteins: the new wave in GA action research, in T.-H.D. Ho, and H. Pakrasi (eds.), The past, Present and Future of Plant Biology, Department of Biology, Washington University, St. Louis, pp. 45–49.Google Scholar
  94. Joseleau, J.-P. and Ruel, K. (1997). Study of lignification by noninvasive techniques in growing maize intemodes. An investigation by Fourier transform infrared cross-polarization-magic angle spinning “C-nuclear magnetic resonance spectroscopy and inununocytochemicaltransmission electron microscopy. Plant Physiol. 114, 1123–1133.PubMedGoogle Scholar
  95. Kajita, S., Katayama, Y., and Omori, S. (1996). Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:coenzyme A ligase. Plant Cell Physiol. 37, 957–965.PubMedGoogle Scholar
  96. Kantelinen, A., Hortling, B., Sundquist, J., Linko, M., and Viikari, L. (1993). Proposed mechanism of the enzymatic bleaching of kraft pulp with xylanases. Holzforschung 47, 318–324.Google Scholar
  97. Karpinska, B., Melzer, M., Karlsson, M., Schinkel, H., Karpinski, S., and Wingsle, G. (1998). A novel CuZn-superoxide dismutase is localised in cell walls in higher plants. Abstract presented at the 8th International Cell Wall Meeting, Norwich (UK), September 1–5, 1998 (#1.50).Google Scholar
  98. Kawai, S., Katayama, Y., and Morohoshi, N. (1994). Analysis of genes involved in lignin biosynthesis in Populus kitakamiensis, in N. Morohoshi, R. Sederoff, and K. Hata (eds.), International Wood Biotechnology Symposium, Tokyo University of Agriculture and Technology, Tokyo, pp. 23–28.Google Scholar
  99. Kawai, S., Mori, A. Shiokawa, T., Kajita, S., Katayama, Y., and Morohoshi, N. (1996). Isolation and analysis of cinnamic acid 4-hydroxylase homologous genes from a hybrid aspen, Populus kitakamiensis. Biosci. Biotech. Biochem. 60, 1586–1597.Google Scholar
  100. Keller, B., Templeton, M.D., and Lamb, C.J. (1989). Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc. Natl. Acad. Sci. USA 86, 1529–1533.PubMedGoogle Scholar
  101. Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A., and Lamb, C. (1998). A plant homolog of the neutrophil NADPH oxidase gp91°“°” subunit gene encodes a plasma membrane protein with Ca’ binding motifs. Plant Cell 10, 255–266.PubMedGoogle Scholar
  102. Klotz, K.L. and Lagrimini, L.M. (1996). Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol. Biol. 31, 565–573.PubMedGoogle Scholar
  103. Kneusel, R.E., Matern, U., and Nicolay, K. (1989). Formation of trans-caffeoyl CoA from trans-4-coumaroyl CoA by Zn“-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Arch. Biochem. Biophys. 269, 455–462.PubMedGoogle Scholar
  104. Kranz, H.D., Denekamp, M., Greco, R., Jin, H. Leyva, A., Meissner, R. C., Petroni, K., Urzainqui, A., Bevan, M., Martin, C., Smeekens, S., Tonelli, C., Paz-Ares, J., and Weisshaar, B.(1998). Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 16 263–276.Google Scholar
  105. Kuo, C.-F. and Fridovich, 1. (1988). Stimulation of the activity of horseradish peroxidase by nitrogenous compounds. J. Biol. Chem. 263, 3811–3817.Google Scholar
  106. Kutsuki, H. Shimada, M., and Higuchi, T. (1982). Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 21 19–23.Google Scholar
  107. Kvaratskhelia, M., Winkel, C., and Thomeley, R.N.F. (1997). Purification and characterization of a novel class III peroxidase isoenzyme from tea leaves. Plant Physiol. 114, 1237–1245.PubMedGoogle Scholar
  108. Lacombe, E., Hawkins, S., Van Doorsselaere, J., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A.-M., and Grima-Pettenati, J. (1997). Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11, 429–441.PubMedGoogle Scholar
  109. LaFayette, P.R., Eriksson, K.-EL., and Dean, J.F.D. (1995). Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer pseudoplatanus L). Plant Physiol. 107, 667–668.PubMedGoogle Scholar
  110. Lagrimini, L.M. (1991). Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 96, 577–583.PubMedGoogle Scholar
  111. Lagrimini, L.M. (1992). Plant peroxidases: under-and over-expression in transgenic plants and physiological consequences, in C. Penel, T. Gaspar, and H. Greppin (eds.), Plant Peroxidases 1980–1990, Topics and Detailed Literature on Molecular, Biochemical, and Physiological Aspects, Université de Genève, Genève, pp. 59–69.Google Scholar
  112. Lagrimini, L.M., Joly, R.J., Dunlap, J.R., and Liu, T.-T.Y. (1997a). The consequence of peroxidase overexpression in transgenic plants on root growth and development. Plant Mol. Biol. 33, 887–895.PubMedGoogle Scholar
  113. Lagrimini, L.M., Gingas, V., Finger, F., Rothstein, S., and Liu, T.-T.Y. (1997b). Characterization of antisenseGoogle Scholar
  114. transformed plants deficient in the tobacco anionic peroxidase. Plant Physiol. 114 1187–1196.Google Scholar
  115. Lange, B.M., Lapierre, C., and Sandermann, H. Jr. (1995). Elicitor-induced spruce stress lignin. Structural similarity to early developmental lignins. Plant Physiol. 108, 1277–1287.PubMedGoogle Scholar
  116. Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Leplé, J.-C., Boerjan, W., Ferret, V., De Nadai, V., and Jouanin, L. (1999). Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have opposite impact on the efficiency of industrial Kraft pulping. Plant Physiol. 119, 153–163.PubMedGoogle Scholar
  117. Lee, D., Meyer, K., Chapple, C., and Douglas, C.J. (1997). Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell, 9, 1985–1998.PubMedGoogle Scholar
  118. Leplé, J.-C., Van Montagu, M., and Boerjan, W. (1995). Cloning of a poplar cDNA encoding a cinnamoyl-CoA reductase (CCR) and transformation of poplars with sense and antisense CCR cDNA sequences. Abstract presented at the Joint Meeting of the IUFRO Working Parties S.04–07 and S.04.06 on “Somatic cell genetics and molecular genetics of trees”, Gent ( Belgium ), September 26–30, 1995.Google Scholar
  119. Leplé, J.-C., Grima-Pettenati, J., Van Montagu, M., and Boerjan, W. (1998). A cDNA encoding cinnamoyl-CoA reductase from Populus trichocarpa (Accession No. AJ224986) (PGR98–121). Plant Physiol. 117, 1126.Google Scholar
  120. Li, L., Popko, J.L., Zhang, X.-H., Osakabe, K., Tsai, C.-J., Joshi, C.P., and Chiang, V.L. (1997). A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc. Natl. Acad. Sci. USA 94, 5461–5466.PubMedGoogle Scholar
  121. Liu, L., Dean, J.F.D., Friedman, W.E., and Eriksson, K.-E.L. (1994). A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J. 6, 213–224.Google Scholar
  122. MacKay, J.J., Liu, W., Whetten, R., Sederoff, R.R., and O’Malley, D.M. (1995). Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol. Gen. Genet. 247, 537–545.PubMedGoogle Scholar
  123. MacKay, J.J., O’Malley, D.M., Presnell, T., Booker, F.L., Campbell, M.M., Whetten, R.W., and Sederoff, R.R. (1997). Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 94, 8255–8260.PubMedGoogle Scholar
  124. Mäder, M., Nessel, A., and Schloss, P. (1986). Cell compartmentation and specific roles of isoenzymes, in H. Greppin, C. Penel, and T. Gaspar (eds.), Molecular and Physiological Aspects of Plant Peroxidases, University de Genève, Genève, pp. 246–260.Google Scholar
  125. McDougall, G.J. (1992). Plant peroxidases and cell differentiation, in C. Penel, T. Gaspar, and H. Greppin (eds.), Plant Peroxidases 1980–1990, Topics and Detailed Literature on Molecular, Biochemical, and Physiological Aspects, Université de Genève, Genève, pp. 101–115.Google Scholar
  126. Meng, H. and Campbell, W.H. (1995). Cloning of aspen xylem caffeoyl-CoA 3-O-methyltransferase (GenBank U27116) (PGR95–040). Plant Physiol. 108, 1749.Google Scholar
  127. Meng, H. and Campbell, W.H. (1998). Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development. Plant Mol. Biol. 38, 513–520.PubMedGoogle Scholar
  128. Messner, K. and Srebotnik, E. (1994). Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbial. Rev. 13, 351–364.Google Scholar
  129. Mehta, V. and Gupta, J.K. (1991). Biotechnology in the pulp and paper industry. Research and Industry 36, 161–167.Google Scholar
  130. Meyer, K., Cusumano, J.C., Somerville, C., and Chapple, C.C.S. (1996). Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl. Acad. Sci. USA 93, 6869–6874.PubMedGoogle Scholar
  131. Meyer, K., Shirley, A.M., Cusumano, J.C., Bell-Lelong, D.A., and Chapple, C. (1998). Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 6619–6623.Google Scholar
  132. Miller, A.R., Crawford, D.L., and Roberts, L.W. (1985). Lignification and xylogenesis in Lactuca pith explants cultured in vitro in the presence of auxin and cytokinin: a role of endogenous ethylene. J. Exp. Bot. 36, 110–118.Google Scholar
  133. Moller, S.G. and McPherson, M.J. (1998). Developmental expression and biochemical analysis of the Arabidopsis ataol gene encoding an H,0, -generating diamine oxidase. Plant J. 13, 781–791.PubMedGoogle Scholar
  134. Moniz de SA, M., Subramaniam, R., Williams, F.E., and Douglas, C.J. (1992). Rapid activation of phenylpropanoid metabolism in elicitor-treated hybrid poplar (Populus trichocarpa Torr. and Gray x Populus deltoides Marsh) suspension-cultured cells. Plant Physiol. 98, 728–737.Google Scholar
  135. Mondes, B. (1998). Novel structures and properties of lignins in relation to their natural and induced variability in ecotypes, mutants and transgenic plants. Polymer Degrad Stabil. 59, 53–64.Google Scholar
  136. Moyano, E., Martinez-Garcia, J.F., and Martin, C. (1996). Apparent redundancy in myb gene function providesGoogle Scholar
  137. gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell 8, 1519–1532.Google Scholar
  138. Moyle, R., Wagner, A., and Walter, C. (1998). Nucleotide sequence of a cinnamyl alcohol dehydrogenase geneGoogle Scholar
  139. Accession No. AF060491) from Pinus radiata (PGR 98–118). Plant Physiol. 117, 1125–1127.Google Scholar
  140. Murphy, T.M. and Auh, C.-K. (1996). The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiol. 110, 621–629.PubMedGoogle Scholar
  141. Mtisel, G., Schindler, T., Bergfeld, R., Ruel, K., Jacquet, G., Lapierre, C., Speth, V., and Schopfer, P. (1997). Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201, 146–159.Google Scholar
  142. Nakashima, J., Awano, T., Takabe, K., Fujita, M., and Saiki, H. (1997). Immunocytochemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells. Plant Cell Physiol. 38, 113–123.Google Scholar
  143. Newman, L.J., Smith, C., Bevan, M., Sederoff, R.R., and Campbell, M. M. (1996). Biochemical analyses of theGoogle Scholar
  144. interactions between pine MYBs and the bean PAL2 promoter. Plant Physiol. 111, Supp., 55 [#133]. Ni, W., Paiva, N.L., and Dixon, R.A. (1994). Reduced lignin in transgenic plants containing a caffeic acid O-methyltransferase antisense gene. Transgenic Res. 3, 120–126.Google Scholar
  145. Niemann, G.J., Eijkel, G.B., Konings, H., Pureveen, J.B.M., and Boon, J.J. (1993). Chemical differences between wildtype and gibberellin mutants of tomato determined by pyrolysis-mass spectrometry. Plant Cell Environ. 16, 1059–1069.Google Scholar
  146. Nilsson, O., Moritz, T., Sundberg, B., Sandberg, G., and Olsson, O. (1996). Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol. 112, 493–502.PubMedGoogle Scholar
  147. O’Malley, D.M., Porter, S., and Sederoff, R.R. (1992). Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiol. 98, 1364–1371.PubMedGoogle Scholar
  148. O’Malley, D.M., Whetten, R., Bao, W., Chen, C.-L., and Sederoff, R.R. (1993). The role of laccase in lignification. Plant J. 4, 751–757.Google Scholar
  149. Ogawa, K., Kanematsu, S., and Asada, K. (1997). Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 38, 1118–1126.PubMedGoogle Scholar
  150. Olson, P.D. and Varner, J.E. (1993). Hydrogen peroxide and lignification. Plant J. 4, 887–892.Google Scholar
  151. Osakabe, K., Koyama, H., Kawai, S., Katayama, Y., and Morohoshi, N. (1994). Molecular cloning and theGoogle Scholar
  152. nucleotide sequences of two novel cDNAs that encode anionic peroxidases of Populus kitakamiensis. Plant Sci. 103 167–175.Google Scholar
  153. Osakabe, Y., Ohtsubo, Y., Kawai, S., Katayama, Y., and Morohoshi, N. (1995a). Structure and tissue-specific expression of genes for phenylalanine ammonia-lyase from a hybrid aspen, Populus kitakamiensis. Plant Sci. 105, 217–226.Google Scholar
  154. Osakabe, Y., Osakabe, K., Kawai, S., Katayama, Y., and Morohoshi, N. (19956). Characterization of the structure and determination of mRNA levels of the phenylalanine ammonia-lyase gene family from Populus kitakamiensis. Plant Mol. Biol. 28 1133–1141.Google Scholar
  155. Osakabe, K., Koyama, H., Kawai, S., Katayama, Y., and Morohoshi, N. (1995c). Molecular cloning of two tandemly arranged peroxidase genes from Populus kitakamiensis and their differential regulation in the stem. Plant Mol. Biol. 28, 677–689.PubMedGoogle Scholar
  156. P stergaard, J., Persiau, G., Davey, M., Bauw, G., and Van Montagu, M. (1997). Isolation of a cDNA coding for L-galactono-y-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol. Chem. 272, 30009–30016.Google Scholar
  157. Otjen, L. and Blanchette, R.A. (1986). A discussion of microstructural changes in wood during decomposition by white rot basidiomycetes. Can. J. Bot. 66, 1841–1847.Google Scholar
  158. Otter, T. and Polle, A. (1994). The influence of apoplastic ascorbate on the activities of cell wall-associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L.). Plant Cell Physiol. 35, 1231–1238.Google Scholar
  159. Otter, T. and Polle, A. (1997). Characterisation of acidic and basic apoplastic peroxidases from needles of Norway spruce (Picea abies, L., Karsten) with respect to lignifying substrates. Plant Cell. Physiol. 38, 595–602. Paice, M.G., Bourbonnais, R., Reid, I.D., Archibald, F.S., and Jurasek, L. (1995). Oxidative bleaching enzymes - a review. J Pulp Paper Sci. 21, J 280-J 284.Google Scholar
  160. Pang, A., Catesson, A.-M., Francesch, C., Rolando, C., and Goldberg, R. (1989). On substrate specificity of peroxidases involved in the lignification process. J. Plant Physiol. 135, 325–329.Google Scholar
  161. Penel, C. and Greppin, H. (1996). Pectin binding proteins: characterization of the binding and comparison with heparin. Plant Physiol. Biochem. 34, 479–488.Google Scholar
  162. Pichorner, H., Couperus, A., Korori, S.A.A., and Ebermann, R. (1992). Plant peroxidase has a thiol oxidase function. Phytochemistry 31, 3371–3376.Google Scholar
  163. Pickett-Heaps, J.D. (1968). Further ultrastructural observations on polysaccharide localization in plant cells. J Cell Sci. 3, 55–64.PubMedGoogle Scholar
  164. Pillonel, C., Mulder, M.M., Boon, J.J., Forster, B., and Binder, A. (1991). Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185, 538–544.Google Scholar
  165. Piquemal, J., Lapierre, C., Myton, K., O’Connell, A., Schuch, W., Grima-Pettenati, J., and Boudet, A.-M. (1998). Down-regulation in cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83.Google Scholar
  166. Plomion, C., Bahrman, N., Durel, C.-E., and O’Malley, D.M. (1995). (ienomic mappiii ’ in Pinar master (maritime pine) using RAPD and protein markers. Heredity 74, 66I - 668.Google Scholar
  167. Poeydomenge, O., Boudet, A.M., and Grima-Pettenati, J. (1994) A cl)NA encoding S-adenosyl-L-methionine:caffeic acid 3-O-methyltransferase from Eucalyptus. Plant Phycinl. 105, 749–750.Google Scholar
  168. Polle, A., Otter, T., and Seifert, F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106, 53–60.PubMedGoogle Scholar
  169. Ralph, J., Grabber, J.H., and Hatfield, R.D. (1995). Lignin-ferulate cross-links in grasses: Active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydrate Res. 275, 167–178.Google Scholar
  170. Ralph, J., MacKay, J.J., Hatfield, R.D., O’Malley, D.M., Whetten, R.W., and Sederoff, R.R. (1997). Abnormal lignin in a loblolly pine mutant. Science 277, 235–239.PubMedGoogle Scholar
  171. Ralph, J., Hatfield, R.D., Piquemal, J., Yahiaoui, N., Pean, M., Lapierre, C., and Boudet, A.M. (1998). NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proc. Natl. Acad. Sci. USA 95, 12803–12808.PubMedGoogle Scholar
  172. Reid, I.D. and Paice, M.G. (1994). Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiol. Rev. 13, 369–376.Google Scholar
  173. Richardson, A., Stewart, D., and McDougall, G.J. (1997). Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of Sitka spruce (Picea sitchensis). Planta 203, 35–43.Google Scholar
  174. Ridoutt, B.G. and Sands, R. (1994). Quantification of the processes of secondary xylem fibre development in Eucalyptus globulus at two height levels. IAWA (Int. Assoc. Wood Anat.) J. 15, 417–424.Google Scholar
  175. Roberts, L.W. (1988). Hormonal aspects of vascular differentiation, in L.W. Roberts, P.B. Gahan, and R. Aloni (eds.), Vascular Differentiation and Plant Growth Regulators, (Springer Series in Wood Science), Springer-Verlag, Berlin, pp. 22–38.Google Scholar
  176. Sablowski, R.W.M., Moyano, E., Culianez-Macia, F.A., Schuch, W., Martin, C., and Bevan, M. (1994). A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 13, 128–137.PubMedGoogle Scholar
  177. Saks, Y., Feigenbaum, P., and Aloni, R. (1984). Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol. 76, 638–642.PubMedGoogle Scholar
  178. Schmitt, D., Pakusch, A.-E., and Matern, U. (1991). Molecular cloning, induction, and taxonomic distribution of caffeoyl-CoA 3-O-methyltransferase, an enzyme involved in disease resistance. J. Biol. Chem. 266, 17416–17423.PubMedGoogle Scholar
  179. Schopfer, P. (1994). Histochemical demonstration and localization of H2O, in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104, 1269–1275.PubMedGoogle Scholar
  180. Sewalt, V.J.H., Ni, W., Blount, J.W., Jung, H.G., Masoud, S.A., Howles, P.A., Lamb, C., and Dixon, R.A. (1997a). Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 115, 41–50.PubMedGoogle Scholar
  181. Sewalt, V.J.H., Ni, W., Jung, H.G., and Dixon, R.A. (1997b). Lignin impact on fiber degradation: increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem. 45, 1977–1983.Google Scholar
  182. Shigematsu, M., Sugino, H., Shinoda, Y., and Tanahashi, M. (1995). Dissolution behavior of monolignols in water. Mokuzai Gakkaishi 41, 1151–1157.Google Scholar
  183. Sitbon, F., Hennion, S., Sundberg, B., Little, C.H.A., Olsson, O., and Sandberg, G. (1992). Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol. 99, 1062–1069.PubMedGoogle Scholar
  184. Sitbon, F., Hennion, S., Little, C.H.A., and Sundberg, B. (1999). Enhanced ethylene production and peroxidase activity in IAA-overproducing transgenic tobacco plants is associated with increased lignin content and altered lignin composition. Plant Science 141, 165–173.Google Scholar
  185. Sterjiades, R., Dean, J.F.D., and Eriksson, K.-E.L. (1992). Laccase from sycamore maple (Ater pseudoplatanus) polymerizes monolignols. Plant Physiol. 99, 1162–1168.PubMedGoogle Scholar
  186. Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlén, M., Sundberg, B., and Lundeberg, J. (1998). Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330–13335.Google Scholar
  187. Stevens, J.A. and Hsieh, J.S. (1996). Chlorine dioxide reduction in ECF bleaching of kraft pulp to high brightness through a low capital enhancement of EOP extraction. Tappi Pulping Conference Proceedings, Book 2, 663–668.Google Scholar
  188. Stewart, D., Yahiaoui, N., McDougall, G.J., Myton, K., Marque, C., Boudet, A.M., and Haigh, J. (1997). Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201, 311–318.PubMedGoogle Scholar
  189. Subramaniam, R., Reinold, S., Molitor, E., and Douglas, C.J. (1993). Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes. Plant Physiol. 102, 71–83.PubMedGoogle Scholar
  190. Takahama, U. (1993). Regulation of peroxidase-dependent oxidation of phenolics by ascorbic acid: different effects of ascorbic acid on the oxidation of coniferyl alcohol by the apoplastic soluble and cell wall-bound peroxidases from epicotyls of Vigna angularis. Plant Cell Physiol. 34, 809–817.Google Scholar
  191. Takahama, U. and Oniki, T. (1994). Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol. 35, 593–600.Google Scholar
  192. Takahama, U., Oniki, T., and Shimokawa, H. (1996). A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in the apoplast: enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant Cell Physiol. 37, 499–504.Google Scholar
  193. Tamagnone, L., Merida, A., Parr, A., Mackay, S., Culianez-Macia, F. A., Roberts, K., and Martin, C. (1998). The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10, 135–154.PubMedGoogle Scholar
  194. Tanahashi, M. and Higuchi, T. (1990). Effect of the hydrophobic regions of hemicelluloses on dehydrogenative polymerization of sinapyl alcohol. Mokuzai Gakkaishi 36, 424–428Google Scholar
  195. Taylor, J.G., Owen, T.P. Jr, Koonce, L.T., and Haigler, C.H. (1992). Dispersed lignin in tracheary elements treated with cellulose synthesis inhibitors provides evidence that molecules of the secondary cell wall mediate wall patterning. Plant J. 2, 959–970.Google Scholar
  196. Terashima, N. and Seguchi, Y. (1988). Heterogeneity in formation of lignin. IX. Factors affecting the formation of condensed structures in lignin. Cellulose Chem. Technol. 22, 147–154.Google Scholar
  197. Terashima, N., Fukushima, K., and Sano, Y. (1988). Heterogeneity in formation of lignin. X. Visualization of lignification process in differentiating xylem of pine by microautoradiography. Holzforschung 42, 347–350.Google Scholar
  198. Tsai, C.-J., Podila, G.K., and Chiang, V.L. (1995). Nucleotide sequence of a Populus tremuloides gene encoding bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase. Plant Physiol. 107, 1459.PubMedGoogle Scholar
  199. Tsai, C.-J., Popko, J.L., Mielke, M.R., Hu, W.-J., Podila, G.K., and Chiang, V.L. (1998). Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol. 117, 101–112.PubMedGoogle Scholar
  200. Tsutsumi, Y., Nishida, T., and Sakai, K. (1994). Lignin biosynthesis in woody angiosperm tissues III. Isolation of substrate-specific peroxidases related to the dehydrogenative polymerization of sinapyl and coniferyl alcohols from Populus callus cultures. Mokuzai Gakkaishi 40, 1348–1354.Google Scholar
  201. Tsutsumi, Y., Matsui, K., and Sakai, K. (1998). Substrate-specific peroxidases in woody angiosperms and gymnosperms participate in regulating the dehydrogenative polymerization of syringyl and guaiacyl type lignin. HolzJòrschung 52, 275–281.Google Scholar
  202. Tuominen, H., Sitbon, F., Jacobsson, C., Sandberg, G., Olsson, O., and Sundberg, B. (1995). Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumelaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol. 109, 1179–1189.PubMedGoogle Scholar
  203. Tuominen, H., Puech, L., Fink, S., and Sundberg, B. (1997). A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol. 115, 577–585.PubMedGoogle Scholar
  204. Tzfira, T., Zuker, A., and Altman, A. (1998). Forest-tree biotechnology: genetic transformation and its application to future forests. Trends Biotechol. 16, 439–446.Google Scholar
  205. Uggla, C., Moritz, T., Sandberg, G., and Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93, 9282–9286.PubMedGoogle Scholar
  206. Uggla, C., Mellerowicz, E. J., and Sundberg, B. (1998). Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol. 117, 113–121.PubMedGoogle Scholar
  207. Van Doorsselaere, J., Dumas, B., Baucher, M., Fritig, B., Legrand, M., Van Montagu, M., and Inzé, D. (1993). One-step purification and characterization of a lignin-specific O-methyltransferase from poplar. Gene 133, 213–217.PubMedGoogle Scholar
  208. Van Doorsselaere, J., Baucher, M., Chognot, E., Chabbert, B., Tollier, M.-T., Petit-Conil, M., Leplé, J.-C., Pilate, G., Cornu, D., Monties, B., Van Montagu, M., Inzé, D., Boerjan, W., and Jouanin, L. (1995a). A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J. 8, 855–864.Google Scholar
  209. Van Doorsselaere, J., Baucher, M., Feuillet, C., Boudet, A.M., Van Montagu, M., and Inzé, D. (1995b). Isolation of cinnamyl alcohol dehydrogenase cDNAs from two important economic species: alfalfa and poplar.Google Scholar
  210. Demonstration of a high homology of the gene within angiosperms. Plant Physiol. Biochem. 33 105–109.Google Scholar
  211. Van Gestelen, P., Asard, H., and Caubergs, R.J. (1997). Solubilization and separation of a plant plasma membrane NADPH-O, synthase from other NAD(P)H oxidoreductases. Plant Physiol. 115, 543–550.PubMedGoogle Scholar
  212. Vignols, F., Rigau, J., Torres, M.A., Capellades, M., and Puigdomènech, P. (1995). The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7, 407–416.PubMedGoogle Scholar
  213. Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. (1994). Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335–350.Google Scholar
  214. Viikari, L., Suurnakki, A., and Buchert, J. (1996). Enzymatic bleaching of kraft pulps: fundamental mechanisms and practical applications-improved pine kraft pulp bleaching and delignification using endo-1,4-beta-D-xylanase and endo-1,4-beta-D-mannase; application in pulp and paper industry. Conference proceedings: 211th ACS National Meeting, New Orleans, LA, 24–28 March.Google Scholar
  215. Voo, K.S., Whetten, R.W., O’Malley, D.M., and Sederoff, R.R. (1995). 4-Coumarate:coenzyme A ligase from loblolly pine xylem. Plant Physiol. 108, 85–97.Google Scholar
  216. Wagner, A., Walden, A., and Walter, C. (1996). A cDNA encoding a cinnamyl alcohol dehydrogenase (Accession No. U62394) from Pinus radiata (PGR96–097). Plant Physiol. 112, 1397.Google Scholar
  217. Wang, J., Jiang, Z. H., and Argyropoulos, D. S. (1997). Isolation and characterization of lignin extracted from softwood kraft Pulp after xylanase treatment. J. Pulp and Paper Science 23, J47 - J51.Google Scholar
  218. Whetten, R.W. and Sederoff, R.R. (1992). Phenylalanine ammonia-lyase from loblolly pine. Purification of the enzyme and isolation of complementary DNA clones. Plant Physiol. 98, 380–386.PubMedGoogle Scholar
  219. Whetten, R.W., MacKay, J.J., and Sederoff, R.R. (1998). Recent advances in understanding lignin biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 585–609.Google Scholar
  220. Wu, G., Shorn, B.J., Lawrence, E.B., Levine, E.B., Fitzsimmons, K.C., and Shah, D.M. (1995). Disease resistance conferred by expression of a gene encoding HA- generating glucose oxidase in transgenic potato plants. Plant Cell 7, 1357–1368.PubMedGoogle Scholar
  221. Wu, G., Shortt, B.J., Lawrence, E.B., León, J., Fitzsimmons, K.C., Levine, E.B., Raskin, I., and Shah, D.M. (1997). Activation of host defense mechanisms by elevated production of H2O, in transgenic plants. Plant Physiol. 115, 427–435.PubMedGoogle Scholar
  222. Yahiaoui, N., Marque, C., Myton, K.E., Negrel, J., and Boudet, A.M. (1998). Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants. Planta 204, 8–15.Google Scholar
  223. Yamamoto, F. and Kozlowski, T.T. (1987). Effect of ethrel on growth and stem anatomy of Pinus halepensis seedlings. IAWA (Int. Assoc. Wood Anat.) Bull. 8, 11–20.Google Scholar
  224. Yamamoto, F., Angeles, G., and Kozlowski, T.T. (1987). Effect of ethrel on stem anatomy of Ulmus americana seedlings. IAWA (Int. Assoc. Wood Anat.) Bull. 8, 3–10.Google Scholar
  225. Yamamoto, E., Inciong, M.E.J., Davin, L.B., and Lewis, N.G. (1990). Formation of cis-coniferin in cell-free extracts of Fagus grandifolia Ehrh bark. Plant Physiol. 94, 209–213.PubMedGoogle Scholar
  226. Ye, Z.-H., Kneusel, R.E., Matern, U., and Varner, J.E. (1994). An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6, 1427–1439.Google Scholar
  227. Zhan, X., Kawai, S., Mori, A., Katayama, Y., and Morohoshi, N. (1996). Manipulation of lignin synthesis through the introduction of an antisense cinnamic acid 4-hydroxylase gene into tobacco and poplar plants. Abstract presented at the Keystone Symposia on Molecular and Cellular Biology on “The extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology”, Tamarron (CO, USA), March 15–21, 1996, p. 22.Google Scholar
  228. Zhang, X.-H. and Chiang, V.L. (1997). Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol. 113, 65–74.PubMedGoogle Scholar
  229. Zhong, Y. and Savidge, R.A. (1995). Manipulating wood and in particular lignin formation in one-year-old white ash cuttings using IAA and GA,. In 22nd annual meeting of plant growth regulation society, pp. 160–161.Google Scholar
  230. Zhong, R., Morrison, W.H. Ill, Negrel, J., and Ye, Z.-H. (1998). Dual methylation pathways in lignin biosynthesis. Plant Cell 10, 2033–2046.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • J. H. Christensen
    • 1
  • M. Baucher
    • 2
  • A. O’Connell
    • 3
  • M. Van Montagu
    • 1
  • W. Boerjan
    • 1
  1. 1.Laboratorium voor Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB)Universiteit GentBelgium
  2. 2.Laboratoire de Biotechnologie VégétaleUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Centre for Plant Breeding and Reproduction Research (CPRO-DLO)WageningenThe Netherlands

Personalised recommendations