Advertisement

Molecular Control of the Development and Function of the Vascular Cambium

  • O. Olsson
  • C. H. A. Little
Part of the Forestry Sciences book series (FOSC, volume 64)

Abstract

In woody species, the primary growth associated with shoot and root elongation is followed by secondary growth that increases the radial width of xylem and phloem through the activity of the vascular cambium. This meristem is similar to the shoot and root apical meristems in exhibiting highly controlled patterns of cell division, with individual derivative cells having specific developmental fates, but differs from the terminal meristems with respect to origin, position, histology and cytology (Steeves and Sussex 1989). Understanding the regulation of cambial cell division and derivative differentiation, i.e., cambial growth, is important because the tissues that are produced are essential for support and the long-distance transport of water and nutrients in perennial species. In addition, these tissues provide society with materials of major economic importance, e.g., lumber and paper, and, considering the current concern about increasing carbon dioxide levels, represent an important carbon sink.

Keywords

Apical Meristem Shoot Apical Meristem Auxin Response Factor Cambial Cell Root Apical Meristem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857PubMedGoogle Scholar
  2. Allona, I., Quinn, M., Shoop, E., Swope, K., Cyr, S.S., Carlis, J., Riedl, J., Retzel, E., Campbell, M.M., Sederoff, R. and Whetten, R.W. (1998). Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad. Sci. USA 95, 9693–9698PubMedGoogle Scholar
  3. Aloni, R. (1995). The induction of vascular tissues by auxin and cytokinin. In Plant Hormones. (Ed. Davies, P.J. ). Kluwer Academic Publishers, Dordrecht, pp. 531–546Google Scholar
  4. Altamura, M.M., Capitani, F., Gazza, L., Capone, I, and Costantino, P. (1994). The plant oncogene ro1B stimulates the formation of flower and root meristemoids in tobacco thin cell layers. New Phytol. 126, 283–293Google Scholar
  5. Aoyama, T. and Chua, N-H. (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612PubMedGoogle Scholar
  6. Aukerman, M.J. and Amasino, R.M. (1998). Floral induction and florigen. Cell 15, 491–494Google Scholar
  7. Bachem, C. W. B., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zebeau, M. and Visser, R. G. F. (1996). Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J. 9, 745–753PubMedGoogle Scholar
  8. Baier, M., Goldberg, R., Catesson, A.-M., Liberman, M., Bouchemal, Michon, V. and Hervé du Penhoat, C. (1994). Pectin changes in samples containing poplar cambium and inner bark in relation to the seasonal cycle. Planta 193, 446–454Google Scholar
  9. Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I. and Morelli, G. (1995). The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121, 4171–4182PubMedGoogle Scholar
  10. Bannan, M.W. (1955). The vascular cambium and radial growth in Thuja occidentalis L. Can. J. Bot. 33, 113–138Google Scholar
  11. Barton, M.K. and Poethig, R.S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119, 823–831Google Scholar
  12. Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M-T. and Aeschbacher, R.A. (1993). Root development in Arabidopsis: Four mutants with dramatically altered root morphogenesis. Development 119, 57–70PubMedGoogle Scholar
  13. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., Feldmann, K.A., Chan, R.L., Gago, G.M. and Palena, C.M. (1996). Arabidopsis AUXI gene: a permeaselike regulator of root gravitropism. Science 273, 948–950Google Scholar
  14. Berleth, T. and Jurgens, G. (1993). The role of the MONOPTEROS gene in organizing the basal body region of the Arabidopsis embryo. Development 118, 575–587Google Scholar
  15. Bernard, K., Auphan, N., Granjeaud, S., Victorero, G., Schmitt-Verhulst, A.M., Jordan, B.R. and Nguyen, C. (1996). Multiplex messenger assay: simultaneous, quantitative measurement of expression of many genes in the context of T cell activation. Nucleic Acids Res. 15, 1435–1442Google Scholar
  16. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Van Staveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S.A., Patel, K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T., Pohl, T.M., Terryn, N., Gielen, J., Villarroel, R. and Chalwatzis, N. (1998). Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488Google Scholar
  17. Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M. and Inzé, D. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405–1419Google Scholar
  18. Burssens, S., VanMontagu, M. and Inze, D. (1998). The cell cycle in Arabidopsis. Plant Physiol. Biochem. 36, 919Google Scholar
  19. Carland, F.M. and McHale, N.A. (1996). LOPI: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122, 1811–1819Google Scholar
  20. Catesson, A.-M. (1994). Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. Int. J. Plant Sci. 155, 251–261Google Scholar
  21. Chaffey, N., Barlow, P. and Barnett, J. (1997). Cortical microtubules rearrange during differentiation of vascular cambial derivatives, microfilaments do not. Trees 11, 333–341Google Scholar
  22. Chang, C. and Stewart, R.C. (1998). The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 117, 723–31PubMedGoogle Scholar
  23. Chen, Hilson, P., Sedbrook, J., Rosen, E., Caspar, T. and Masson, P.H. (1998). The arabidopsis thaliana AGRAVITROPIC I gene encodes a component of the polar-auxin-transport efflux carrier. Proc.Natl.Acad.Sci. USA 95, 15112–15117Google Scholar
  24. Clark, S.E., Jacobsen, S.E., Levin, J.Z. and Meyerowitz, E.M. (1996). The CLAVATA and SHOOTMERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122, 1565–1575Google Scholar
  25. Clark, S.E. (1997). Organ formation at the vegetative shoot meristem. Plant Cell 9, 1067–1076PubMedGoogle Scholar
  26. Cook, D. and Sequiera, L. (1991). The use of subtractive hybridization to obtain a DNA probe specific for Pseudotnonas solanacearum race 3. Mol. Gen. Genet. 227, 401–410PubMedGoogle Scholar
  27. Creelman, R.A. and Mullet, J.E. (1997). Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9, 1211–1223PubMedGoogle Scholar
  28. Cui, K., Wu, S., Wei, L. and Little, C.H.A. (1996). Effect of exogenous IAA on the regeneration of vascular tissues and periderm in girdled Betula pubescens stems. Chinese J. Bot. 7, 17–23Google Scholar
  29. Dangl, J.L., Preuss, D. and Schroeder, J.I. (1995). Talking through walls: signaling in plant development. Cell 83, 1071–1077PubMedGoogle Scholar
  30. Davies, P.J. (1995). Plant Hormones: Physiology, Biochetnistry and Molecular Biology, Kluwer Academic Publishers, DordrechtGoogle Scholar
  31. Delarue, M., Prinsen, E., Onckelen, H.V., Caboche, M. and Bellini, C. (1998). Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J. 14, 603–611Google Scholar
  32. Demura, T. and Fukuda, H. (1993). Molecular cloning and characterization of cDNAs associated with trachearyGoogle Scholar
  33. element differentiation in cultured Zinnia cells. Plant Physiol. 103 815–821Google Scholar
  34. Demura, T. and Fukuda, H. (1994). Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6, 967–981Google Scholar
  35. DeRisi, J.L., Iyer, V.R. and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 24, 680–686Google Scholar
  36. DeRobertis, E.M. (1994). The homeobox in cell differentiation and evolution. In Guidebook to the homeobox genes (Duhoise, D. ed.). Sambrook & Tooze Oxford University Press, pp. 13–23Google Scholar
  37. Desprez, T., Amselem, J., Caboche, M. and Hofte, H. (1998). Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J. 14, 643–652PubMedGoogle Scholar
  38. Dharmawardhana, D.P., Ellis, B.E. and Carlson, J.E. (1992). Characterization of vascular lignification in Arabidopsis thaliana. Can. J. Bot. 70, 2238–2244Google Scholar
  39. Diatchenko, L., Lau, Y.F.C., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D. and Siebert, P.D. (1996). Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Sci. USA 93, 6025–6030Google Scholar
  40. DiLaurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A. and Benfey, P.N. (1996). The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organisation of the Arabidopsis root. Cell 86, 423–433.Google Scholar
  41. Doebley, J. and Lukens, L. (1998). Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082PubMedGoogle Scholar
  42. Doerner, P., Jorgensen, J.E., You, R., Steppuhn, J. and Lamb, C. (1996). Control of root growth and development by cyclin expression. Nature 11, 520–523Google Scholar
  43. Dolan, L. and Scheres, B. (1998). Root pattern: shooting in the dark ? Semin. Cell. Dev. Biol. 9, 201–206PubMedGoogle Scholar
  44. Doonan, J. and Fobert, P. (1997). Conserved and novel regulators of the plant cell cycle. Curr. Opin. Cell. Biol. 9, 824–830PubMedGoogle Scholar
  45. Duboule, D (1994). Descriptions of homeobox genes. In Guidebook to the homeobox genes (Ed. Duboise, D. ). Sambrook & Tooze Oxford University Press, pp. 73–246Google Scholar
  46. Eklund, L. and Little, C.H.A. (1996). Laterally applied Ethrel causes local increases in radial growth and indol-3acetic acid concentration in Abies balsamea shoots. Tree Physiol. 16, 509–513PubMedGoogle Scholar
  47. Eklund, L., Little, C.H.A. and Riding, R.T. (1998). Concentrations of oxygen and indole-3-acetic acid in the cambial region during latewood formation and dormancy development in Picea ables stems. J. Exper. Bot. 49, 205–211Google Scholar
  48. Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z. and Laux, T. (1996). The SHOOTMERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10, 967–979.PubMedGoogle Scholar
  49. Esau, K. (1977). Anatomy of Seed Plants, John Wiley, New York.Google Scholar
  50. Evans, M.M.S. and Barton, M.K. (1997). Genetics of angiosperm shoot apical meristem development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 673–701Google Scholar
  51. Fanner, E.E., Weber, H. and Vollenweider, S. (1998). Fatty acid signaling in Arabidopsis. Planta 206, 167–74Google Scholar
  52. Fladung, M. (1990). Transformation of diploid and tetraploid potato clones with the roIC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breeding 104, 295–304Google Scholar
  53. Fladung, M., Kumar, S. and Ahuja, M.R. (1997). Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transg. Res. 6, 111–121Google Scholar
  54. Fowler, M.R., Eyre, S., Scott, N.W., Slater, A. and Elliott, M.C. (1998). The plant cell cycle in context. Mol. Biotechnol. 10, 123–53PubMedGoogle Scholar
  55. Fujita, H. and Syono, K. (1997). PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J. 12, 583–595PubMedGoogle Scholar
  56. Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P.N. and Tasaka, M. (1998). Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 14, 425–430PubMedGoogle Scholar
  57. Fukuda, H. (1992). Tracheary element formation as a model system of cell differentiation. Int. Rev. Cytol. 136, 289–332Google Scholar
  58. Fukuda, H. (1997). Tracheary element differentiation. Plant Cell 9, 1147–1156PubMedGoogle Scholar
  59. Funada, R., Abe, H., Furusawa, O., lmaizumi, H., Fukazawa, K. and Ohtani, J. (1997). The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol. 38, 210–212Google Scholar
  60. Gahan, P.B. (1988). Xylem and phloem differentiation in perspective. In Vascular Differentiation and Plant Growth Regulators, (Eds. Roberts, L.W., Gahan, P.B. and Aloni, R.) Springer-Verlag, Berlin, pp. 1–21.Google Scholar
  61. Gahan, P.B. (1989). How stable are cambial initials? Bot. J. Linnean Soc. 100, 319–321Google Scholar
  62. Garbers, C., DeLong A., Deruere, J., Bernasconi, P. and Soll, D. (1996). A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15, 2115–2124PubMedGoogle Scholar
  63. Gaudin, V., Vrain, T. and Jouanin, L. (1994). Bacterial genes modifying hormonal balances in plants. Plant Physiol. Biochem. 32, 1 l–29Google Scholar
  64. Gehring, W., Affolter, M. and Bürglin, T. (1994). Homeodomain proteins. Annu. Rev. Biochem. 63, 487–526PubMedGoogle Scholar
  65. Gonzalez, D.H. (1998). Homeoboxes in plant development. Biochim Biophys Acta 23, 1–19Google Scholar
  66. Guglielmino, N., Liberman, M., Catesson, A.M., Mareck, A., Prat, R., Mutaftschiev, S. and Goldberg, R. (1997). Pectin methylesterases from poplar cambium and inner bark: localization, properties and seasonal changes. Planta 202, 70–75PubMedGoogle Scholar
  67. Guilfoyle, T.J., Ulmasov, T. and Hagen, G. (1998a). The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell. Mol. Life Sci. 54, 619–627PubMedGoogle Scholar
  68. Guilfoyle, T., Hagen, G., Ulmasov, T. and Murfett, J. (1998b). How does auxin turn on genes? Plant Physiol. 118, 341–347PubMedGoogle Scholar
  69. Han, K.H., Gordon, M.P. and Strauss, S.H. (1997). High frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can. J. For. Res. 27, 464–470Google Scholar
  70. Hardtke, C.S. and Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411PubMedGoogle Scholar
  71. Harris, J.M. (1989). In Spiral Grain and Wave Phenomena in Wood Formation. Springer-Verlag, Berlin.Google Scholar
  72. Hasezawa, S. and Nagata, T. (1992). Okadaic acid as a probe to analyze the cell-cycle progression in plant-cells. Botanica Acta. 105, 63–69Google Scholar
  73. Hemerly, A., Engler, J. de A., Bergounioux, C., Van Montagu, M., Engler, G., Inze, D. and Ferreira, P. (1995). Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development EMBO J. 15, 3925–3936Google Scholar
  74. Herman, L., Jacobs, A., van Montagu, M. and Depicker, A. (1990). Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224, 248–256PubMedGoogle Scholar
  75. Hertzberg, M. and Olsson, O. (1998). Molecular characterisation of a novel plant homeobox gene expressed in the maturing xylem zone of Populus tremula x tremuloides. Plant J. 16, 285–296PubMedGoogle Scholar
  76. Higuchi, T. (1997). Biochemistry and Molecular Biology of Wood, Springer-Verlag, Berlin.Google Scholar
  77. Hudson, A. and Goodrich, J. (1997). Plant meristems: cell signalling keeps the balance. Curr. Biol. 7, R427–429PubMedGoogle Scholar
  78. Iqbal, M. (1990). The Vascular Cambium, Research Studies Press Ltd., Taunton, UKGoogle Scholar
  79. Igbal, M. (1995a). The Cambial Derivatives,Gebrüder Bomtraeger, Berlin, Encycl. Plant Anatomy 9 (4).Google Scholar
  80. Igbal, M. (1995b). Structure and behaviour of vascular cambium and the mechanism and control of cambialGoogle Scholar
  81. growth. In The Cambial Derivatives. (Ed. lqbal, M). Gebrüder Borntraeger, Berlin, Encycl. Plant Anatomy 9, 1–67.Google Scholar
  82. lqbal, M. and Ghouse, A.K.M. (1990). Cambial concept and organization. In The Vascular Cambium. (Ed. Igbal, M ). Research Studies Press Ltd., Taunton, UK, pp. 1–36Google Scholar
  83. Johansson, A-M., Stcnberg, A., Hertzberg, M., Little, C.H.A., and Olsson, O. (1999). Isolation and characterisation of a cambial region specific promoter from hybrid aspen identified by T-DNA mediated promoter trapping. Submitted manuscript.Google Scholar
  84. Jürgens, G., Torres Ruiz, R.A., Laux, T., Mayer, U. and Berleth, T. (1994). Early events in apical-basal pattern formation in Arabidopsis. In Plant Molecular Biology: Molecular-Genetic Analysis of Platt Development and Metabolism (Eds. Coruzzi, G. and Puigdoménech, P. ). Berlin: Springer-Verlag, pp. 95–103Google Scholar
  85. Kalev, N. and Aloni, R. (1998). Role of auxin and gibberellin in regenerative differentiation of tracheids in Pinus pinea seedlings. New Phytol. 138, 461–468Google Scholar
  86. Keddie, J.S., Carroll, B.J., Thomas, C.M., Reyes, M.E.C., Klimyuk, V., Holtan, H., Gruissem, W. and Jones, J.D.G. (1998). Transposon tagging of the Defective embryo and meristems gene of tomato. Plant Cell 10, 877–888PubMedGoogle Scholar
  87. Kerstetter, R., Vollbrecht, E., Lowe, B., Veit, B., Yamaguchi, J. and Hake, S. (1994). Sequence analysis and expression patterns divide the maize knotted-1 like homeobox genes into two classes. Plant Cell 6, 1877–1887PubMedGoogle Scholar
  88. Kerstetter, R. and Hake, S. (1997). Shoot meristem formation and vegetative development. Plant Cell 9, 1001–1010PubMedGoogle Scholar
  89. Koncz, C., Martini, N.. Mayerhofer, R., Koncz-Kalman, Z., Körber, H., Redei, G. P. and Schell, J. (1989). High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86, 8467–8471Google Scholar
  90. Koncz, C., Nemeth, K., Redei, G.P. and Schell, J. (1992). T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963–976Google Scholar
  91. Kozlowski, T.T. and Pallardy, S.G. (1997a) Physiology of Woody Plants, Academic Press, San DiegoGoogle Scholar
  92. Kozlowski, T.T. and Pallardy, S.G. (1997b) Growth Control in Woody Plants, Academic Press, San DiegoGoogle Scholar
  93. Kurioka, Y., Suzuki, Y., Kamada, H. and Harada, H. (1992). Promotion of flowering and morphological alterations in Atropa belladonna transformed with a CaMV 35S-rolC chimeric gene of the Ri plasmid. Plant Cell Reports 12, 1–6Google Scholar
  94. Larson, P.R. (1982). The concept of cambium. In New Perspectives in Wood Anatomy (Ed. Baas, P. ). Martinus Nijhoff Publishers, The Hague, pp. 85–121Google Scholar
  95. Larson, P.R. (1994). The Vascular Cambium: Development and Structure, Springer-Verlag, Berlin.Google Scholar
  96. Laux, T., Mayer, K.F.X., Berger, J. and Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96PubMedGoogle Scholar
  97. Laux, T. and Jürgens, G. (1997). Embryogenesis: A new start in life. Plant Cell 9, 989–1000PubMedGoogle Scholar
  98. Laux, T. and Mayer, K.F. (1998). Cell fate regulation in the shoot meristem. Semin. Cell Dev. Biol. 9, 195–200Google Scholar
  99. Lawrence, P.A. and Morata, G. (1994). Homeobox genes: Their function in Drosophila segmentation and pattern formation. Cell 78, 181–189PubMedGoogle Scholar
  100. Lev-Yadun, S. (1994). Induction of sclereid differentiation in the pith of Arabidopsis thaliana (L.) Heynh. J. Exper. Bot. 45, 1845–1849Google Scholar
  101. Leyser, O.(1998) Auxin signalling: protein stability as a versatile control target Curr. Biol. 8, R305–307.Google Scholar
  102. Liang, P. and Pardee, A.B. (1995). Recent advances in differential display. Curr. Opin. Immunol. 7, 274–280Google Scholar
  103. Little, C.H.A. and Pharis, R.P. (1995). Hormonal control of radial and longitudinal growth in tree stems. In Plant Stems: Physiology and Functional Morphology. (Ed. Gartner, B.L. ). Academic Press, San Diego, pp. 281–319.Google Scholar
  104. Lloyd, A.D., Mellerowicz, E.J., Riding, R.T. and Little, C.H.A. (1996). Changes in nuclear genome size and relative ribosomal RNA gene content in cambial region cells of Abies balsamea shoots during the development of dormancy. Can. J. Bot. 74, 290–298Google Scholar
  105. Long, J.A., Moan, E.I., Medford, J.i., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69PubMedGoogle Scholar
  106. Luschnig, C., Gaxiola, R.A., Grisafi, P. and Fink, G.R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes and Develop. 12, 2175–2187Google Scholar
  107. Lyndon, R.F. (1990). Plant Development: The Cellular Basis, Unwin Hyman Ltd., London.Google Scholar
  108. Manak, J.R. and Scott, M.P (1994). A class act: conservation of homeodomain protein functions. Development (Suppl), 61–77Google Scholar
  109. Mauseth, J.D. (1988). Plant Anatomy, The Benjamin/Cummings Publishing Company, Menlo Park, CA, USA. Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G. and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 5, 805–185Google Scholar
  110. McConnell, J.R. and Barton, M.K. (1995). Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Dev. Genet. 16, 358–366Google Scholar
  111. Mellerowicz, E.J., Coleman, W.K., Riding, R.T. and Little, C.H.A. (1992). Periodicity of cambial activity in Abies balsamea. 1. Effects of temperature and photoperiod on cambial dormancy and frost hardiness. Physiol. Plant. 85, 515–525Google Scholar
  112. Mellerowicz, E.J., Riding, R.T. and Little, C.H.A. (1993). Nucleolar activity in the fusiform cambial cells of Abies balsamea (Pinaceae): effect of season and age. Amer. J. Bot. 80, 1168–1174Google Scholar
  113. Meyerowitz, E.M. (1997). Genetic control of cell division patterns in developing plants. Cell 88, 299–308PubMedGoogle Scholar
  114. Moller, S.G. and McPherson, M.J. (1998). Developmental expression and biochemical analysis of the Arabidopsis ataol gene encoding an H2O,-generating diamine oxidase. Plant 1. 13, 781–791Google Scholar
  115. Moritz, T. and Sundberg, B. (1996). Endogenous cytokinins in the vascular cambial region of Pinus sylvestres during activity and dormancy. Physiol. Plant. 98, 693–698Google Scholar
  116. Munnik, T., Irvine, R.F. and Musgrave, A. (1998). Phospholipid signalling in plants. Biochim. Biophys. Acta 1389, 222–272Google Scholar
  117. Müller, A., Guan, C., Galweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E. and Palme K (1998). AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903Google Scholar
  118. Nilsson, O., Alden, T., Sitbon, F., Little C.H.A., Chalupa, V, Sandberg, G. and Olsson, O. (1992). Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transg. Res. 1, 209–220Google Scholar
  119. Nilsson, O., Moritz, T., Imbault, N., Sandberg, G. and Olsson, O. (1993). Hormonal characterization of transgenic tobacco expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol. 102, 363–371PubMedGoogle Scholar
  120. Nilsson, O., Moritz, T., Sundberg, B., Sandberg, G. and Olsson, O. (1996a). Expression of the Agrobacterium rhizogenes roiC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol. 112, 493–502PubMedGoogle Scholar
  121. Nilsson, O., Little, C.H.A., Sandberg, G. and Olsson, O. (19966). Expression of two heterologous promoters, Agrobacterium rhizogenes roiC and Cauliflower Mosaic Virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol. Biol. 31, 887–895Google Scholar
  122. Nilsson, O. and Olsson, O. (1997). Getting to the root: The role of the Agrobacterium rhizogenes rot-genes in the formation of hairy roots. Physiol. Plant, 100, 463–473Google Scholar
  123. Northcote, D.H. (1995). Aspects of vascular tissue differentiation in plants: parameters that may be used to monitor the process. Int. J. Plant Sci. 156, 245–256Google Scholar
  124. Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud FormationPlant Cell 3, 677–684Google Scholar
  125. Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M., Martinusen, I., Olsson, O., Sandberg, G. and Moritz, T. (1997). Ectopic expression of oat phytochrome A in hybrid aspen change critical daylength for growth and prevents cold acclimation. Plant J. 12, 1339–1350Google Scholar
  126. Olsson, O., Koncz, C. and Szalay, A.A. (1988). The use of the luxA gene of the bacterial luciferase operon as a reporter gene. Mol. Gen. Gen 215, 1–9Google Scholar
  127. Olsson, O., Esher, A., Koncz, C., Sandberg, G., Schell, J. and Szalay, A.A. (1989). Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes of Vibrio harvey. Gene 81, 335–347PubMedGoogle Scholar
  128. Oono, Y., Handa, T., Kanaya, K. and Uchimiya, H. (1987). The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn. J. Genet. 62, 501–505Google Scholar
  129. Oono, Y., Kanaya K. and Uchimiya H. (1990). Early flowering in transgenic tobacco plants possessing the roiC gene of Agrobacterium rhizogenes Ri plasmid. Jpn. J. Genet. 65, 7–16Google Scholar
  130. Peyroche, A., Paris, S. and Jackson, C.L. (1996). Nucleotide exchange on ARF mediated by yeast Geal protein. Nature 384, 479–484PubMedGoogle Scholar
  131. Poethig, S. (1987). Clonal analysis of cell lineage patterns in plant development. Am. J. Bot. 74, 581–594Google Scholar
  132. Pozo, J.C., Timpte, C., Tan, S., Callis, J. and Estelle, M. (1998). The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280, 1760–1763PubMedGoogle Scholar
  133. Prome, J.C. (1996). Signalling events elicited in plants by defined oligosaccharide structures. Curr. Opin. Struct. Biol. 6, 671–678PubMedGoogle Scholar
  134. Przemeck, G.K.H., Mattsson, J., Hardtke, C.S., Sung, Z.R. and Berleth T. (1996). Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229–237PubMedGoogle Scholar
  135. Reiter, W-D., Chapple, C. and Sommerville, C. (1997). Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12, 335–345PubMedGoogle Scholar
  136. Rossant, J. and Joyner, A. (1989). Towards a molecular-genetic analysis of mammalian development. Trends Genet. 5, 277–283Google Scholar
  137. Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G. and Estelle, M. (1997). Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9, 745–57PubMedGoogle Scholar
  138. Sakai, H., Medrano, L.J. and Meyerowitz E.M. (1995). Role of SUPERMAN in maintaining Arabidopsis floral boundaries. Nature 378, 199–203PubMedGoogle Scholar
  139. Savidge, R.A. (1983). The role of plant hormones in higher plant cellular differentiation. H. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochem. J. 15, 447–466PubMedGoogle Scholar
  140. Savidge, R.A. (1991). Seasonal cambial activity in Larix laricina saplings in relation to endogenous indol-3ylacetic acid, sucrose, and coniferin. Forest Sci. 37, 953–958Google Scholar
  141. Savidge, R.A. (1994). The tracheid-differentiation factor of conifer needles. Int. J. Plant Sci. 155, 272–290Google Scholar
  142. Savidge, R.A. (1996). Xylogenesis, genetic and environmental regulation — a review. IAWA J. 17, 269–310Google Scholar
  143. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O. and Davis, R.W. (1996). Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619PubMedGoogle Scholar
  144. Scheres, B., Di Laurenzio, L., Willemsen, V., Hauser, M-T., Janmaat, K., Weisbeek, P. and Benfey, P.N. (1995) Mutations affecting the radial organization of the Arabidopsis root display specific effects throughout the embryonic axes. Development 121, 53–62Google Scholar
  145. Schiefelbein, J.D., Masucci, J.D. and Wang, H. (1997). Building a root: The control of patterning and morphogenesis during root development. Plant Cell 9, 1089–1098PubMedGoogle Scholar
  146. Schwartzenberg, K.V., Doumas, P., Jouanin, L. and Pilate, G. (1994). Enhancement of endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14, 27–35Google Scholar
  147. Schwechheimer, C. and Bevan, M. (1998). The regulation of transcription factor activity in plants. Trends in Plant Sci. 3, 378–383Google Scholar
  148. Scott, M.P., Tamkun J.W. and Hartzell G.W. (1989). The structure and function of the homeodomain. Biochimica et Biophysica Acta 989, 25–48PubMedGoogle Scholar
  149. Schmulling, T., Schell, J. and Spena, A. (1988). Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7, 2621–2629PubMedGoogle Scholar
  150. Seo, M., Akaba, S., Oritani, T., Delarue, M., Bellini, C., Caboche, M. and Koshiba, T. (1998). Higher activity of an aldehyde oxidase in the auxin-overproducing superrootl mutant of Arabidopsis thaliana. Plant. Physiol. 116, 687–693PubMedGoogle Scholar
  151. Sessa, G., Carabelli, M., Ruberti, I., Lucchetti, S., Baima, S. and Morelli, G. (1994). Identification of distinct families of HD-ZIP proteins. In Arabidopsis thaliana. In Molecular-Genetic Analysis of Plant Development and Metabolism (Eds. Puigdomenech, P. and Coruzzi, G. ). Berlin: Springer Verlag, pp. 411–426Google Scholar
  152. Sessions, A., Yanofsky, M.F. and Weigel, D. (1998). Patterning the floral meristem. Semin. Cell. Dev. Biol. 9, 221–226PubMedGoogle Scholar
  153. Simon, R., Igeno, M.I. and Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature 384, 59–62PubMedGoogle Scholar
  154. Sitbon, F., Eklöf, S., Riding, R.T., Sandberg, G., Olsson, O. and Little, C.H.A. (1993). Patterns of protein synthesis in the cambial region of Scots pine shoots during reactivation. Physiol. Plant. 87, 601–608Google Scholar
  155. Sitbon, F. and Perrot-Rechenmann, C. (1997). Expression of auxin induced genes. Physiol. Plant. 100, 443–455Google Scholar
  156. Soh, W.Y. (1990). Origin and development of cambial cells. In The Vascular Cambium, (Ed. Igbal, M. ). Research Studies Press Ltd., Taunton, UK, pp. 37–62Google Scholar
  157. Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996). The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159–170PubMedGoogle Scholar
  158. Steeves, T.A. and Sussex, I.M. (1989). Patterns in Plant Development, Cambridge University Press, CambridgeGoogle Scholar
  159. Sterky, R, Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B. and Lundeberg, J. (1998). Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330–13335PubMedGoogle Scholar
  160. Sundberg, B., Tuominen, H. Nilsson O. Moritz,T. Little C.H.A. Sandberg G. and Olsson 0. (1996). Alteration of Growth and Development in Transgenic Populus: current status and potential applications. In “Micropropagation, genetic engineering, and molecular biology of Populus. (Ed. Klopfenstein, N.B., Chun, Y.W., Kim, M-S. and Ahuja, R.J. ). pp. 74–83Google Scholar
  161. Szymkowiak, E.J. and Sussex, LM. (1992). The internal meristem layer ( L3) determines floral meristcm size and carpel number in tomato periclinal chimeras. Plant Cell 9, 1089–1100Google Scholar
  162. Talbert, P.B., Adler, H.T., Parks, D.W. and Cornai, L. (1995). The REVOLTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121, 2723–2735PubMedGoogle Scholar
  163. Tinland, B. (1996). The integration of T-DNA into plant genomes. Trends in Plant Science 6, 178 - I84Google Scholar
  164. Topping, J.F., Wei, W. and Lindsey, K. (1991). Functional tagging of regulatory elements in the plant genome. Development 112, 1009–1019PubMedGoogle Scholar
  165. Topping, J.F. and Lindsey, K. (1995). Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development. Transg. Res. 4, 291–305Google Scholar
  166. Trewavas, A., Read, N., Campbell, A.K. and Knight, M. (1996). Transduction of Ca2+ signals in plant cells and compartmentalization of the Ca2+ signal. Biochem. Soc. Trans. 24, 971–974PubMedGoogle Scholar
  167. Tuominen, H., Sitbon, F., Jacobsson, C., Sandberg, G., Olsson, O. and Sundberg, B. (1995). Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol. 109, 1179–118PubMedGoogle Scholar
  168. Turner, S.R. and Somerville, C. (1997). Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701PubMedGoogle Scholar
  169. Tzifira, T., Zuker, A. and Altman, A. (1998). Forest-tree biotechnology: genetic transformation and its applications to future forests. Trends in Biotech. 16, 439–446Google Scholar
  170. Uggla, C., Moritz, T., Sandberg, G. and Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93, 9282–9286PubMedGoogle Scholar
  171. Uggla, C., Mellerowicz, E.J. and Sundberg, B. (1998). Indole-3-acetic acid controls cambial growth in Scots pine by positional signalling. Plant Physiol. 117, 113–121PubMedGoogle Scholar
  172. Ulmasov, T., Liu, Z.B., Hagen, G. and Guilfoyle, T.J. (1995). Composite structure of auxin response elements. Plant Cell 7, 1611–1623PubMedGoogle Scholar
  173. Ulmasov, T., Hagen, G. and Guilfoyle, T.J. (1997). ARFI, a transcription factor that binds to auxin response elements. Science 20, 1865–1868Google Scholar
  174. Utsuno, K., Shikanai, T., Yamada, Y. and Hashimoto, T. (1998). AGR, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39, 1111–1118Google Scholar
  175. van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. and Scheres, B. (1995). Determination of cell fate in the Arabidopsis root meristem by directional signalling. Nature 378, 62–65PubMedGoogle Scholar
  176. Vietor, R.J., Renard, C.M.G.C., Goldberg, R., and Catesson, A.-M. (1995). Cell-wall polysaccharides in growing bark tissue. Int. J. Macromol. 17, 341–344Google Scholar
  177. Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. (1991). The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350, 241–243PubMedGoogle Scholar
  178. Vroemen, C.W., Langeveld, S., Mayer, U., Ripper, G., Jürgens, G., Van Kammen, A. and De Vries, S.C. (1996). Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8, 783–791PubMedGoogle Scholar
  179. Wang, Q., Little, C.H.A. and Odén, P.C. (1997). Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiol. 17, 715–721PubMedGoogle Scholar
  180. Williams, R.W. (1998). Plant homeobox genes: many functions stem from a common motif. Bioessays 20, 280–282PubMedGoogle Scholar
  181. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. and Lockhart, D.J. (1997). Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359–1367PubMedGoogle Scholar
  182. Ye, Z.H. and Varner, J.E. (1993). Gene expression patterns associated with in vitro tracheary element formation in isolated single mesophyll cells of Zinnia elegans. Plant. Physiol. 103, 805–813PubMedGoogle Scholar
  183. Ye, Z.H. and Varner, J.E. (1994). Expression of an auxin-and cytokinin-regulated gene in cambial region in Zinnia. Proc. Natl. Sci. USA 91, 6539–6543Google Scholar
  184. Ye, Z.H. and Varner, J.E. (1996). Induction of cysteine and serine proteases during xylogenesis in Zinnia elegans. Plant. Mol. Biol. 30, 1233–46PubMedGoogle Scholar
  185. Zagórska-Marek, B. (1995). Morphogenetic waves in cambium and figured wood formation. In The Cambial Derivatives, (Ed. Iqbal, M.). Gebrüder Bomtraeger, Berlin, Encycl. Plant Anatomy 9 (4), pp. 69–92.Google Scholar
  186. Zagórska-Marek, B. and Little, C.H.A. (1986). Control of fusiform initial orientation in the vascular cambium of Abies balsatnea stems by indo1–3-ylacetic acid. Can. J. Bot. 64, 1120–1128Google Scholar
  187. Zhong, R., Taylor, J.J. and Ye, Z-H. (1997). Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 9, 2159–2170PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • O. Olsson
    • 1
  • C. H. A. Little
    • 2
  1. 1.Department of Molecular BiologyGöteborg UniversityGöteborgSweden
  2. 2.Natural Resources CanadaCanadian Forest Service — Atlantic Forestry CentreFrederictonCanada

Personalised recommendations