Advertisement

Options for Genetic Engineering of Floral Sterility in Forest Trees

  • J. S. Skinner
  • R. Meilan
  • A. M. Brunner
  • S. H. Strauss
Part of the Forestry Sciences book series (FOSC, volume 64)

Abstract

Engineering of genetic sterility in transgenically modified trees destined for commercial uses will simplify compliance with regulatory guidelines and mitigate ecological concerns of transgene dispersal. It could also be a critical technology for reducing the rate of escape and invasive mobility of exotic plantation species. Added benefits may include increased biomass production by redirecting energy normally expended on reproduction, and elimination of nuisance pollen and fruits. We discuss the two basic strategies for genetically engineering reproductive sterility; 1) suppression of reproductive gene expression and 2) genetic cell ablation of floral structures through the use of cytotoxins or gene products whose overexpression is detrimental to cell function. We also discuss various cytotoxins and inhibitors thereof that could be used to reverse sterility and enable traditional breeding.

Keywords

Transgenic Plant Diphtheria Toxin Floral Development Floral Meristem Cell Ablation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amasino, R.A., 1996. Control of flowering time in plants. Curr Opin Gen Dev 6: 480–487.CrossRefGoogle Scholar
  2. Aoyama, T. & N.-H. Chua, 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11: 605–612.PubMedCrossRefGoogle Scholar
  3. Balandin, T., & C. Castresana, 1997. Silencing of a ß-1,3-glucanase transgene is overcome during seed Formation. Plant Mol Biol 34: 125–137.PubMedCrossRefGoogle Scholar
  4. Beals, T.P., & R.B. Goldberg, 1997. A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9: 1527–1545.PubMedGoogle Scholar
  5. Blázquez, M., L. Soowal, I. Lee, & D. Weigel, 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835–3844.PubMedGoogle Scholar
  6. Block, M., & D. Debrouwer, 1993. Engineered fertility control in transgenic Brassica napus L.: histochemical analysis of anther development. Planta 189: 218–225.CrossRefGoogle Scholar
  7. Block, M., D. Debrouwer, & T. Moens, 1997. The development of a nuclear male sterility system in wheat. Expression of the bamase gene under the control of tapetum specific promoters. Theor Appl Genet 95: 125–131.CrossRefGoogle Scholar
  8. Hoes, T. & S.H. Strauss, 1994. Floral phenology and morphology of Populus trichocarpa (Salicaceae). Amer J Bot 81: 562–567.CrossRefGoogle Scholar
  9. Braun, C.J., J.N. Siedow, & C.S. Levings III, 1990. Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli. Plant Cell 2: 153–161.PubMedGoogle Scholar
  10. Bradley, D., R. Carpenter, L. Copsey, C. Vincent, S. Rothstein, & E. Coen, 1996. Control of inflorescence architecture in Antirrhinum. Nature 379: 791–797.PubMedCrossRefGoogle Scholar
  11. Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter, & E. Coen, 1997. Inflorescence commitment and architecture in Arabidopsis. Science 275: 80–82.PubMedCrossRefGoogle Scholar
  12. Brunner, A.M., W.H. Rottmann, L.A. Sheppard, & S.H. Strauss, 1998. PTAGI and PTAG2: two closely related Populus trichocarpa genes homologous to AGAMOUS. (manuscript in preparation).Google Scholar
  13. Caddick, M.X., A.J. Greenland, I. Jepson, K.P. Krause, N. Qu, K.V. Riddell, M.G. Salter, W. Schuch, U. Sonnewald, & A.B. Tomsett, 1998. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotech 16: 177–180.Google Scholar
  14. Cannon, M., J. Platz, M. O’Leary, C. Sookdeo, & F. Cannon, 1990. Organ-specific modulation of gene expression in transgenic plants using antisene RNA. Plant Mol Biol 15: 39–47.PubMedCrossRefGoogle Scholar
  15. Cardon, G.H., S. Hohmann, K. Nettesheim, H. Saedler, & P. Huijser, 1997. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12: 367–377.PubMedCrossRefGoogle Scholar
  16. Cigan, A.M., & M.C. Albertsen, 1997. Transgenic plant and method for producing male sterility using anther specific promoter 5126. US Patent 5689049.Google Scholar
  17. Coen, E.S., & E.M. Meyerowitz, 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37.PubMedCrossRefGoogle Scholar
  18. Colombo, L., J. Franken, A.R. van der Krol, P.E. Wittich, H.J.M. Dons, & G.C. Angenent, 1997. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703–715.PubMedGoogle Scholar
  19. Czako, M., & G. An, 1991. Expression of DNA coding for diphtheria toxin chain A is toxic to plant cells. Plant Physiol 95: 687–692.PubMedCrossRefGoogle Scholar
  20. Czako, M., J.C. Jang, J.M. Herr, & L. Marton, 1992. Differential manifestation of seed mortality induced by seed-specific expression of the gene for diphtheria toxin A chain in Arabidopsis and tobacco. Mol Gen Genet 235: 33–40.PubMedCrossRefGoogle Scholar
  21. Day, C.D., B.F.C. Galgoci, & V.F. Irish, 1995. Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development. Development 121: 2887–2895.PubMedGoogle Scholar
  22. Day, C.D., & V.F. Irish, 1997. Cell ablation and the analysis of plant development. Trends Plant Sci 2: 106–111.Google Scholar
  23. Domenighini, M., M. Pizza, & R. Rappuoli, 1995. Bacterial ADP-Ribosyltransferases. In: J. Moss, B. Iglewski, M. Vaughan, A. Tu (Eds.), Bacterial Toxins and Virulence Factors in Disease, pp. 59–80. Marcel Dekker. Inc., New York.Google Scholar
  24. Espeseth, A.S., A.L. Darrow, & E. Linney, 1993. Signal transduction systems: dominant negative strategies and mechanisms. Mol Cell Diff 1: 111–161.Google Scholar
  25. Flavell, R.B., 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496.PubMedCrossRefGoogle Scholar
  26. Gallie, D.R., 1998. Controlling gene expression in transgenics. Curr Opin Plant Biol 1: 166–172.PubMedCrossRefGoogle Scholar
  27. Gatz, C., C. Frohberg, & R. Wendenburg, 1992. Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 2: 397–404.PubMedGoogle Scholar
  28. Gatz, C., 1996. Chemically inducible promoters in transgenic plants. Curr Opin Biotechnol 7: 168–172.CrossRefGoogle Scholar
  29. Gatz, C., & I. Lenk, 1998. Promoters that respond to chemical inducers. Trends Plant Sci 3: 352–358.CrossRefGoogle Scholar
  30. Goldman, M.H.S., R.B. Goldberg, & C. Mariani, 1994. Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13: 2976–2984.PubMedGoogle Scholar
  31. Greenfield, L., M.J. Bjorn, G. Horn, D. Fong, G.A. Buck, R.J. Collier, & D.A. Kaplan, 1983. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage ß. Proc Natl Acad Sci USA 80: 6853–6857.PubMedCrossRefGoogle Scholar
  32. Hackett, R.M., M.J. Lawrence, & C.H. Franklin, 1992. A Brassica S-locus related gene promoter directs expression in both pollen and pistil of tobacco. Plant J 2: 613–617.CrossRefGoogle Scholar
  33. Harrison, E.P., N.M. Willingham, J.C. Lloyd, & C.A. Raines, 1998. Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204: 27–36.CrossRefGoogle Scholar
  34. Han, K.-H., M.P. Gordon, & S.H. Strauss, 1996. Cellular and molecular biology of Agrobacterium-mediated transformation of plants and its application to genetic transformation ofPopulus. In: R. F. Stealer, H.D. Bradshaw, P.E. Heilman, T.M. Hinckley (Eds.), Biology of Populus and its Implications for Management and Conservation, pp. 201–222. National Research Council of Canada, Ottawa.Google Scholar
  35. Hartley, R.W., 1988. Barnase and barstar: Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202: 913–915.PubMedCrossRefGoogle Scholar
  36. Haugn, G.W., E.A. Schulz, & J.M. Martinez-Zapater, 1995. The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants. Can J Bot 73: 959–981.CrossRefGoogle Scholar
  37. Hill, T.A., C.D. Day, S.C. Zondlo, AG. Thackeray, & V.F. Irish, 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic geneAPETALA3. Development 125: 1711–1721.PubMedGoogle Scholar
  38. Hughes, C.E., 1994. Risks of species introductions in tropical forestry. Comm For Rev 73: 243–252.Google Scholar
  39. Jack, T., L.L. Brockman, & E.M. Meyerowitz, 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.PubMedCrossRefGoogle Scholar
  40. Jorgensen, R.A., P.D. Cluster, J. English, Q. Que, & C.A. Napoli, 1996. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31: 957–973.PubMedCrossRefGoogle Scholar
  41. Kandasamy, M.K., M.K. Thorsness, S.J. Rundle, M.L. Goldberg, J.B. Nasrallah, & M.E. Nasrallah, 1993. Ablation of papillar cell function in Brassica flowers results in the loss of stigma receptivity to pollination. Plant Cell 5: 263–275.PubMedGoogle Scholar
  42. Kania, T., D. Russenberger, S. Peng, K. Apel, & S. Melzer, 1997. FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327–1338.PubMedGoogle Scholar
  43. Keen, N.T., & S. Tamaki, 1986. Structure of two pectate lyase gene from Erwinia chrysanthemi EC 16 and their high-level expression in Escherichia coli. J Bact 168: 595–606.PubMedGoogle Scholar
  44. Kilby, N.J., M.R. Snaith, & J.A.H. Murray, 1993. Site-specific recombinases: tools for genome engineering. Trends Genet 9: 413–421.PubMedCrossRefGoogle Scholar
  45. Koning, A., A Jones, J.J. Fillatti, L. Cornai, & M.W. Lassner, 1992. Arrest of embryo development in Brassica napus mediated by modified Pseudomonas aeruginosa exotoxin A. Plant Mol Biol 18: 247–258.PubMedCrossRefGoogle Scholar
  46. Koltunow, A.M., J. Truettner, K.H. Cox, M. Wallroth, & R.B. Goldberg, 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.PubMedGoogle Scholar
  47. Kyozuka, J., R. Harcourt, W.J. Peacock, & E.S. Dennis, 1997. Eucalyptus has functional equivalents of the Arabidopsis API gene. Plant Mol Biol 35: 573–584.PubMedCrossRefGoogle Scholar
  48. Ledig, F.T., & D.I.H. Linzer, 1978. Fuel crop breeding. Chemtech 8: 18–27.Google Scholar
  49. Lee, I., M.J. Aukerman, S.L. Gore, K.N. Lohman, S.D. Michaels, L.M. Weaver, M.C. John, K.A. Feldmann, & R.M. Amasino, 1994. Isolation ofLUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75–83.PubMedGoogle Scholar
  50. Lee, H.S., B. Karunanandaa, A. McCubbin, S. Gilroy, & T.H. Kao, 1996. PRK1, a receptor-like kinase of Petunia inflata, is essential for postmeiotic development of pollen. Plant J 9: 613–624.CrossRefGoogle Scholar
  51. Liu, J.-J., & G.K. Podila, 1996. Characterization of a MADS box gene (Accession No. Y09611) from immature female cone of red pine. Plant Physiol 113: 665.Google Scholar
  52. Ma, H., 1994. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Devel 8: 745–756.PubMedCrossRefGoogle Scholar
  53. MacKnight, R., I. Bancroft, T. Page, C. Lister, R. Schmidt, K. Love, L. Westphal, G. Murphy, S. Sherson, C. Cobbett, & C. Dean, 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737–745.Google Scholar
  54. Mariani, C., M. de Beuckeleer, J. Truettner, J. Leemans, & R.B. Goldberg, 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741.CrossRefGoogle Scholar
  55. Mariani, C., V. Gossele, M. de Beuckeleer, M. de Block, R.B. Goldberg, W. de Greef, & J. Leeman, 1992. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.CrossRefGoogle Scholar
  56. McLean, K.M., & H.R. Whiteley, 1987. Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis. J Bacteriol 169: 1017–1023.PubMedGoogle Scholar
  57. Men, V.L., L.P. Lochhead, & P.H.S. Reynolds, 1993. Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci USA 90: 4567–4571.CrossRefGoogle Scholar
  58. Mett, V.L., E. Podivinsky, A.M. Tennant, L.P. Lochhead, W.T. Jones, & P.H.S. Reynolds, 1996. A system for tissue-specific copper-controllable gene expression in transgenic plants: nodule-specific antisense of asparate aminotransferase-P2. Trans Res 2: 105–113.CrossRefGoogle Scholar
  59. Mizukami, Y., H. Huang, M. Tudor, Y. Hu, & H. Ma, 1996. Functional domains of the floral regulator AGAMOUS: Characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8: 831–845.PubMedGoogle Scholar
  60. Maeser, S., & R. Kahmann, 1991. The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts. Mol Gen Genet 230: 170–176.PubMedCrossRefGoogle Scholar
  61. Mol, J.N.M., R. Van Blokland, P. De Lange, M. Stain, & J.M. Kooter, 1994. Post-transcriptional inhibition of gene expression: sense and antisense genes. In: Paszkowski, J, ed. Homologous Recombination and Gene Silencing in Plants. Dordrecht, The Netherlands: Kluwer Academic Publishers: 309–334.CrossRefGoogle Scholar
  62. Moore, I., L. Galweiller, D. Grosskopf, J. Schell, & K. Palme, 1998. A transcription activation system for regulated gene expression in transgenic plants. Proc Natl Acad Sci USA 95: 376–381.PubMedCrossRefGoogle Scholar
  63. Mouradov, A., T.V. Glassick, B.A. Hamdorf, L.C. Murphy, S.S. Marla, Y. Yang, & R.D. Teasdale, 1998a. Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiol 117: 55–61.PubMedCrossRefGoogle Scholar
  64. Mouradov, A, T. Glassick, B. Hamdorf, L. Murphy, B. Fowler, S. Marla, & R.D. Teasdale 1998b. NEEDLY, a Pinus radiata ortholog ofFLORICAULAILEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA 95: 6537–6542.Google Scholar
  65. Nazarov, V., J. Botterman, P. Stanssens, & J. Sevcik, 1993. A novel ribonuclease and its inhibitor. European Patent 0 537 399 Al.Google Scholar
  66. Nilsson, O., E. Wu, D.S. Wolfe, & D. Weigel, 1998. Genetic ablation of flowers in transgenic plants. Plant J (Accepted for Publication).Google Scholar
  67. Nyers, L.S., AH. Doerksen, A.B. Krupkin, & S.H. Strauss, 1993. Floral MADS-box genes in poplar, pine, and Douglas-fir. J Cell Biochem s17: 22.Google Scholar
  68. Oliver, M.J., J.E. Quisenberry, N.L.G. Trolinder, & D.L. Keim, 1998. Control of plant gene expression. US Patent 5, 723–765.Google Scholar
  69. Palauqui, J.C., T. F.lmayan, F. Dorlhac de Borne, P. Crete, C. Charles, & H. Vaucheret, 1996. Frequencies, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol 112: 1447–1450.Google Scholar
  70. Palmiter, R.D., R.R. Behringer, C.J. Quaife, F. Maxwell, I.H. Maxwell, & R.L. Brinster, 1987. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50: 435–443.PubMedCrossRefGoogle Scholar
  71. Park, Y.D., I. Papp, E.A. Moscone, V.A. Iglesias, H. Vaucheret, A.J.M. Matzke, & M.A. Matzke, 1996. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9: 183–194.PubMedCrossRefGoogle Scholar
  72. Pnueli, L., D. Hareven, A.D. Rounsley, & M.F. Yanofsky, 1994. Isolation of the tomato Agamous gene TAGI and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163–173.PubMedGoogle Scholar
  73. Pnueli, L., D. Hareven, L. Broday, C. Hurwitz, & E. Lifshitz, 1994. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175–186.PubMedGoogle Scholar
  74. Putterill, J., F. Robson, K. Lee, R. Simon, & G. Coupland, 1995. The CONSTANS gene ofArabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription actors. Cell 80: 847–857.PubMedCrossRefGoogle Scholar
  75. Quaas, R., Y. McKeown, P. Stanssens, R. Frank, H. Blocker, & U. Hahn, 1988. Expression of the chemically synthesized gene for ribonuclease Tl in Escherichia coli using a secretion cloning vector. Eur J Biochem 173: 617–622.PubMedCrossRefGoogle Scholar
  76. Que, Q., H.Y. Wang, J.J. English, & R.A. Jorgensen, 1997. The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9: 1357–1368.PubMedGoogle Scholar
  77. Richardson, D.M., 1998. Forestry trees as invasive aliens. Cons Biol 12: 18–26.CrossRefGoogle Scholar
  78. Roberts, M.R., E. Boyes, & R.J. Scott, 1995. An investigation of the role of the anther tapetum during microspore development using genetic cell ablation. Sex Plant Reprod 8: 299–307.CrossRefGoogle Scholar
  79. Rottmann, W.H., R.M. Meilan, L.A. Sheppard, A.M. Brunner, J.S. Skinner, C. Ma, L. Jouanin, G. Pillate, & S.H. Strauss, 1998. The Populus trichocarpa homolog of FLOILFY is vegetatively expressed and not sufficient for flowering. (manuscript in preparation).Google Scholar
  80. Rutledge, R., S. Regan, O. Nicolas, P. Fobert, C. Cote, W. Bosnich, C. Kauffeldt, G. Sunohara, A. Seguin, & D. Stewart, 1998. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15: 625–634.PubMedCrossRefGoogle Scholar
  81. Schmulling, T., H. Rohrig, S. Pilz, R. Walden, & J. Schell, 1993. Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol Gen Genet 237: 385–394.PubMedGoogle Scholar
  82. Sehnke, P.C., L. Pedrosa, A.L. Paul, A.E. Frankel, & R.J. Ferl, 1994. Expression of active, processed ricin in transgenic tobacco. J Biol Chem 269: 22473–22476.PubMedGoogle Scholar
  83. Sheppard, L.A., 1997. PTD: a Populus trichocarpa gene with homology to floral homeotic transcription factors. Ph.D. Dissertation. Oregon State University.Google Scholar
  84. Sieburth, L.E., & E.M. Meyerowitz, 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9: 355–365.PubMedGoogle Scholar
  85. Smith, H.A., S.L. Swaney, T.D. Parks, E.A. Wemsman, & W.G. Dougherty, 1994. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of non-essential RNAs. Plant Cell 6: 1441–1453.PubMedGoogle Scholar
  86. Southerton, S.G., S.H. Strauss, M.R. Olive, R.L. Harcourt, V. Decroocq, X. Zhu, D.J. Llewellyn, W.J. Peacock, & E.S. Dennis, 1998a. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37: 897–910.PubMedCrossRefGoogle Scholar
  87. Southerton, S.G., H. Marshall, A. Mouradov, & R.D. Teasdale, 1998b. Eucalypt MADS-box genes expressed in developing flowers. Plant Physiol 118: 365–372.PubMedCrossRefGoogle Scholar
  88. Spena, A., E. Prinsen, M. Fladung, S.C. Schulze, & H. Van Onckelen, 1991. The indoleacetic acid-lysine synthase gene of Pseudomonas syringae subsp. savastanoi induce developmental alterations in transgenic tobacco and potato plants. Mol Gen Genet 227: 205–212.PubMedCrossRefGoogle Scholar
  89. Strauss, S.H., W.H. Rottmann, A.M. Brunner, & L.A. Sheppard, 1995. Genetic engineering of reproductive sterility in forest trees. Mol Breed 1: 5–26.CrossRefGoogle Scholar
  90. Strauss, S.H., R. James, A. Brunner, S. DiFazio, & R. Meilan, 1997. Tree Genetic Engineering Research Cooperative Annual Report 1996–1997.Google Scholar
  91. Sundâs, A., K. Tandre, M. Nilsson, & P. Engstrom, 1993. A gymnosperm homologue to the maize KNOTTED-1 gene. J Cell Biochem S17: 37.Google Scholar
  92. Tandre, K., V.A. Albert, A. Sunds, & P. Engström, 1995. Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27: 69–78.Google Scholar
  93. Tandre, K., M. Svenson, M.E. Svensson, & P. Engström, 1998. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J 15: 615–623.Google Scholar
  94. Thorsness, M.K., M.K. Kandasamy, M.E. Nasrallah, & J.B. Nasrallah, 1991. ABrassica S-locus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Devel Biol 143: 173–184.CrossRefGoogle Scholar
  95. Thorsness, M.K., M.K. Kandasamy M E Nasrallah, & J.B. Nasrallah, 1993. Genetic ablation of floral cells in Arabidopsis. Plant Cell 5: 253–261.Google Scholar
  96. Thorsness, M.K., & J.B. Nasrallah, 1995. Cell specific ablation in plants. Meth Cell Biol 50: 439–448.CrossRefGoogle Scholar
  97. Tilly, J.J., D.W. Allen, & T. Jack, 1998. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647–1657.PubMedGoogle Scholar
  98. Twell, D., 1995. Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187: 144–154.CrossRefGoogle Scholar
  99. Tzfira, T., A. Zucker, & A. Altman, 1998. Forest-tree biotechnology: Genetic transformation and its application to future forests. Trends Biotech 16: 439–445.CrossRefGoogle Scholar
  100. van der Geest, A.H.M., D.A. Frisch, J.D. Kemp, & T.C. Hall, 1995. Cell ablation reveals that expression from the phaseolin promoter is confined to embryogenesis and microsporogenesis. Plant Physiol 109: 1151–1158.Google Scholar
  101. van der Meer, I.M., M.E. Stain, Ai. van Tunen, J.N.M. Mol, & A.R. Stuitje, 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4: 253–262.PubMedGoogle Scholar
  102. Wang, H., H.M. Wu, & A.Y. Cheng, 1993. Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5: 1639–1650.PubMedGoogle Scholar
  103. Wang, D.Y., R.E. Bradshaw, C. Walter, M.B. Connett, & D.W. Fountain, 1997. Structural characterisation of Pinus radiata MADS-box DNA sequences isolated by PCR cloning. New Zealand J For Sci 27: 3–10.Google Scholar
  104. Weigel, D., 1995. The genetics of flowering: From floral induction to ovule morphogenesis. Annu Rev Genetics 29: 19–39.CrossRefGoogle Scholar
  105. Weigel, D., J. Alvarez, D.R. Smyth, M.F. Yanofsky, & E.M. Meyerowitz, 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859.PubMedCrossRefGoogle Scholar
  106. Weigel, D., & E.M. Meyerowitz, 1994. The ABCs of floral homeotic genes. Cell 78: 203–209.PubMedCrossRefGoogle Scholar
  107. Worrall, D., D.L. Hird, R. Hodge, W. Paul, J. Draper, & R. Scott, 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771.PubMedGoogle Scholar
  108. Wright, L.L., 1994. Production technology status of woody and herbaceous crops. Biomass & Bioenergy 6: 191–209.CrossRefGoogle Scholar
  109. Yamaizumi, M., E. Mekada, T. Uchida, & Y. Okada 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15: 245–250.PubMedCrossRefGoogle Scholar
  110. Yanofsky, M.F., 1995. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Ann Rev Plant Physiol Plant Mol Biol 46: 167–188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • J. S. Skinner
  • R. Meilan
  • A. M. Brunner
  • S. H. Strauss

There are no affiliations available

Personalised recommendations