Population Genetic Analysis of Pathogenic Forest Fungi

  • Xiao-Ru Wang
  • Alfred E. Szmidt
Part of the Forestry Sciences book series (FOSC, volume 64)


Fungi are a large and diverse group of organisms. They are present, in a variety of forms, in almost every habitat. Fungi are often specific in their occurrence on particular types of host (or substrate) and ecological niche. Many microscopic fungi rarely come to our attention. For example, observations of endophytic fungi suggest that each species of vascular plant is affected by at least two to four species of endophyte that are specifically associated with the plant species (Bills 1996). Fungi may also become partners with higher plants and enter complex biological relationships with the host (Flor 1971; McDonald et al. 1989; Clay & Kover 1996; Thrall & Burdon 1997).


Internal Transcribe Spacer Amplify Fragment Length Polymorphism Asexual Reproduction Vegetative Compatibility Group Cryphonectria Parasitica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G., Hammar, S., and Proffer, T. 1990. Vegetative compatibility in Leucostoma persoonii. Phytopathology, 80: 287–291.Google Scholar
  2. Anagnostakis, S.L. 1982. Genetic analyses of Endothia parasitica: linkage data for four single genes and three vegetative compatibility types. Genetics, 102: 25–28.PubMedGoogle Scholar
  3. Anagnostakis, S.L. 1987. Chestnut blight: the classical probelm of an introduced pathogen. Mycologia, 79: 23–37.Google Scholar
  4. Anderson, J.B., and Kohn, L.M. 1995. Clonality in soilborne, plant-pathogenic fungi. Annu. Rev. Phytopathol. 33: 369–391.Google Scholar
  5. Anderson, J.B., Ullrich, R.C., Roth, L.F., and Filip, G.M. 1979. Genetic identification of clones of Armillaria mellea in coniferous forest in Washington. Phytopathology, 69: 1109–1111.Google Scholar
  6. Bae, H.H., Hansen, E.M., and Strauss, S.H. 1994. Restriction fragment length polymorphisms demonstrate single origin of infection centers in Phellinus weirii. Can. J. Bot. 72: 440–447.Google Scholar
  7. Barklund, P., and Rowe, J. 1981. Gremmeniella abietina (Sclerpderris lagerbergii), a primary parasite in a Norway spruce die-back. Eur. J. For. Path. 11: 97–108.Google Scholar
  8. Barrett, D.K., and Uscuplic, M. 1971. The field distribution of interacting strains of Polyponis schweinitzü and their origin. New Phytologist, 70: 581–598.Google Scholar
  9. Bazzigher, G. 1981. Selection of blight-resistant chestnut trees in Switzerland. Europ. J. For. Pathol. 11: 199–207.Google Scholar
  10. Begerow, D., Bauer, R., and Oberwinkler, F. 1997. Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can. J. Bot. 75: 2045–2056.Google Scholar
  11. Berbee, M.L., and Taylor, J.W. 1993. Dating the evolutionary radiations of the true fungi. Can. J. Bot. 71: 1114–1127.Google Scholar
  12. Bernier, L., Hamelin, R.C., and Ouelette, G.B. 1994. Comparison of ribosomal DNA length and restriction site polymorphisms in Gremmeniella and Ascocalyx isolates. Appl. Environ. Microbiol. 60: 1279–1286.Google Scholar
  13. Bills, G.F. 1996. Isolation and analysis of endophytic fungal communities from woody plants. In: Endophytic fungi in grasses and woody plant. Systematics, ecology, and evolution, Redlin, S.C. and Carris, L.M. (eds), APS Press, St. Parl, Minnesota, pp. 31–65.Google Scholar
  14. Bos, C.J. 1996a. Biology of fungi. In: Fungal Genetics: principles and practice, Bos, C.J. (ed), Marcel Dekker, New York, pp. 1–12.Google Scholar
  15. Bos, C.J. 1996b. Somatic recombination. In: Fungal genetics: principles and practice, Bos, C.J. (ed), Marcel Dekker, New York, pp. 73–95.Google Scholar
  16. Brasier, C.M. 1986. The population biology of Dutch elm disease: its principle features and some implications for other host-pathogen systems. Adv. Plant Pathol. 5: 53–118.Google Scholar
  17. Brasier, C.M. 1988. Rapid changes in genetic structure of epidemic populations of Ophiostoma ulmi. Nature, 332: 538–541.Google Scholar
  18. Brasier, C.M. 1991. Ophiostoma novoulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia, 115: 151–161.Google Scholar
  19. Brasier, C.M. 1992. Evolutionary Biology of Phytophthora. Part I. Genetic system, sexuality and the generation of variation. Annu. Rev. Phytopathol. 30: 153–171.Google Scholar
  20. Brasier, C.M. 1995. Episodic selection as a force in fungal microevolution, with special reference to clonal spéciation and hybrid introgression. Can. J. Bot. 73 (Suppl. I): S1213–51221.Google Scholar
  21. Brasier, C.M. 1996. Low genetic diversity of the Ophiostoma novo-ulmi population in North America. Mycologia, 88: 951–964.Google Scholar
  22. Brasier, C.M., and Gibbs, J.N. 1973. Origin of the Dutch elm disease epidemic in Britain. Nature, 242: 607–609.Google Scholar
  23. Brayford, D. 1990. Vegetative incompatibility in Phomopsis from elm. Mycol. Res. 94: 745–752.Google Scholar
  24. Brooks, R.R., and Huang, P.C. 1972. Redundant DNA of Neurospora crassa. Biochem. Genet. 6: 41–49.Google Scholar
  25. Brown, A.H.D. 1975. Sample sizes required to detect linkage disequilibrium between two or three loci. Theor. Popul. Biol. 8: 184–201.Google Scholar
  26. Bruns, T.D., White, T.J., and Taylor, J.W. 1991. Fungal molecular systematics. Anna. Rev. Ecol. Syst. 22: 525–564.Google Scholar
  27. Bruns, T.D., Vilgalys, R., Barns, S.M., Gonzales, D., Hibbett, D.S., Lane, D.J., Simon, L., Stickel, S., Szaro, T.M., Weisburg, W.G., and Sogin, M.L. 1992. Evolutionary relationships within the fungi: analyses of small subunit rRNA sequences. Mol. Phylogen. Evol. 1: 231–241.Google Scholar
  28. Buchko, J., and Klassen, G.R. 1990. Detection of length heterogeneity in the ribosomal DNA of Pythium ultimum by PCR amplification of the intergenic region. Curr. Genet. 18: 203–205.Google Scholar
  29. Burdon, J.J., and Roelfs, A.P. 1985a. The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis. Phtopathology, 75: 1068–1073.Google Scholar
  30. Burdon, J.J., and Roelfs, A.P. 1985b. Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and P. recondita on wheat. Phytopathology, 75: 907–913.Google Scholar
  31. Caten, C.E. 1981. Parasexual processes in fungi. In: The Fungal Nucleus, Gull, K. and Oliver, S.G. (eds), Cambridge University Press, Cambridge, pp. 191–214.Google Scholar
  32. Cervera, M.T., Gusmao, J., Steenackers, M., Vangysel, A., Vanmontagu, M., and Boerjan, W. 1996. Application of AFLP(TM)-based molecular markers to breeding of Populus spp. Plant Growth Regulation, 20: 47–52.Google Scholar
  33. Chen, R.S., and McDonald, B.A. 1996. Sexual reproduction plays a major role in the genetic structure of populations of the fungus ATycosphaerella graminicola. Genetics, 142: 1119–1127.PubMedGoogle Scholar
  34. Chen, R.-S., Boeger, J.M., and McDonald, B.A. 1994. Genetic stability in a population of a plant pathogenic fungus over time. Mol. Ecol. 3: 209–218.Google Scholar
  35. Cherry, J.M., Adler, C., Ball, C., Chervitz, S.A., Dwight, S.S., Hester, E.T., Jia, Y., Juvik, G., Roe, T., Schroeder, M., Weng, S., and Botstein, D. 1998. SGD: Saccharomyces genome database. Nucl. Acid Res. 26: 73–79.Google Scholar
  36. Chou, C.K.S. 1976. A shoot dieback in Pinus radiata caused by Diplodia pinea. I. Symptoms, disease development, and isolation of the pathogen. New Zealand J. For. Sci. 6: 72–79.Google Scholar
  37. Clay, K., and Kover, P.X. 1996. The red queen hypothesis and plant/pathogen interactions. Annu. Rev. Phytopathol. 34: 29–50.Google Scholar
  38. Collins, R.A., and Saville, B.J. 1990. Indenpentent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora. Nature, 345: 177–179.PubMedGoogle Scholar
  39. Currie, D., and Toes, E. 1978. Stem volume loss due to severe Diplodia infection in a young Pinus radiata stand. New Zealand J. For. 23: 143–148.Google Scholar
  40. Damaj, M., Jabajihare, S.H., and Charest, P.M. 1993. Isozyme variation and genetic relatedness in binucleate Rhizoctonia species. Phytopathology, 83: 864–871.Google Scholar
  41. Dutta, S.K. 1974. Repeated DNA sequences in fungi. Nucl. Acids. Res. 1: 1411–1419.Google Scholar
  42. Dutta, S.K., and Ojha, M. 1972. Relatedness between major taxonomic groups of fungi based on the measurement of DNA nucleotide sequence homology. Mol. Gen. Genet. 114: 232–240.Google Scholar
  43. Earl, A.J., Turner, G., and Croft, J.H. 1981. High frequency transfer of species specific mitochondrial DNA sequences between members of the Aspergillaceae. Curr. Genet. 3: 221–228.Google Scholar
  44. Elias, K.S., and Schneider, R.W. 1992. Genetic diversity within and among races and vegetative compatibility groups of Fusarium oxysporum f. sp. lycopersici as determined by isozyme analysis. Phytopathology, 82: 1421–1427.Google Scholar
  45. Ennos, R.A., and McConnell, K.C. 1995. Using genetic markers to investigate natural selection in fungal populations. Can. J. Bot. 73 (Suppl. 1): S302 - S310.Google Scholar
  46. Ennos, R.A., and Swales, K.W. 1987. Estimation of the mating system in a fungal pathogen Crumenulopsis sororia ( Karst.) Groves using isozyme markers. Heredity, 59: 423–430.Google Scholar
  47. Ennos, R.A., and Swales, K.W. 1991. Genetic variability and population structure in the canker pathogen Crumenulopsis sororia. Mycol. Res. 95: 521–525.Google Scholar
  48. Erland, S., Henrion, B., Martin, F., Glover, L.A., and Alexander, I.J. 1994. Identification of the ectomycorrhizal basidiomycete Tylospora fibrillosa Donk by RFLP analysis of the PCR-amplified ITS and IGS regions of ribosomal DNA. New Phytologist, 126: 525–532.Google Scholar
  49. Esser, K., and Kuenen, R. 1967. Genetics offrmgi. Springer, Berlin.Google Scholar
  50. Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275–296.Google Scholar
  51. Fry, W.E., Goodwin, S.B., Matuszak, J.M., Spielman, L.J., Milgroom, M.G., and Drenth, A. 1992. Population genetics and intercontinental migrations of Phytophthora infestans. Anna. Rev. Phytopathol. 30: 107–129.Google Scholar
  52. Förster, H., and Coffey, M.D. 1993. Molecular taxonomy of Phytophthora megasperma based on mitochondrial and nuclear DNA polymorphisms. Mycol. Res. 97: 1101–1112.Google Scholar
  53. Gardes, M., and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113–118.Google Scholar
  54. Gargas, A., and Depriest, P.T. 1996. A nomenclature for fungal PCR primers with examples from intron-containing SSU rDNA. Mycologia, 88: 745–748.Google Scholar
  55. Glass, N.L., and Kuldau, G.A. 1992. Mating type and vegetative incompatibility in filamentous ascomycetes. Annu. Rev. Phytopathol. 30: 201–224.Google Scholar
  56. Goodwin, S.B., Drenth, A., and Fry, W.E. I992a. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr. Genet. 22: 107–115.Google Scholar
  57. Goodwin, S.B., Maroof, M.A.S., Allard, R.W., and Webster, R.K. 1993. Isozyme variation within and among populations of Rhynchosporium secalis in Europe, Australia and the United States. Mycol. Res. 97: 49–58.Google Scholar
  58. Goodwin, S.B., Spielman, L.J., Matuszak, J.M., Bergeron, S.N., and Fry, W.E. 1992b. Clonal diversity and genetic differentiation of Phytophthora infestans populations in Northern and Central Mexico. Phytopathology, 82: 955–961.Google Scholar
  59. Goosen, T., and Debets, F. 1996. Molecular genetic analysis. In: Fungal Genetics: Principles and Practice, Bos, C.J. (ed), Marcel Dekker, New York, pp. 97–117.Google Scholar
  60. Gordon, T.R., Okamoto, D., and Milgroom, M.G. 1992. The structure and interrelationship of fungal populations in native and cultivated soils. Mol. Ecol. 1: 241–249.Google Scholar
  61. Gray, M.W. 1989. Origin and evolution of mitochondrial DNA. Aim. Rev. Cell Biol. 5: 25–50.Google Scholar
  62. Greig, B.J.W., and Pratt, J.E. 1976. Some observation on the longevity of Formes annosus in conifer stumps. Fur. J. For. Path. 6: 250–253.Google Scholar
  63. Guillaumin, J.-J., Anderson, J.B., Legrand, P., Ghahari, S., and Berthelay, S. 1996. A comparison of different methods for the identification of genets of Armillaria spp. New Phytologist, 133: 333–343.Google Scholar
  64. Hamer, J.E. 1991. Molecular probes for rice blast disease. Science, 252: 632–633.PubMedGoogle Scholar
  65. Hamer, J.E., and Givan, S. 1990. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus. Mol. Gen. Genet. 223: 487–495.Google Scholar
  66. Hansen, E.M., Stenlid, J., and Johansson, M. 1993. Genetic control of somatic incompatibility in the root-rotting basidiomycete Heterobasidion annosum. Mycol. Res. 97: 1229–1233.Google Scholar
  67. Hellgren, M., and Barklund, P. 1992. Studies of the life cycle of Gremmeniella abietina on Scots pine in southern Sweden. Eur. J. For. Path. 22: 300–311.Google Scholar
  68. Henson, J.M., and French, R. 1993. The polymerase chain reaction and plant disease diagnosis. Annu. Rev. Phytopathol. 31: 81–109.Google Scholar
  69. Heywood, J.S. 1991. Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst. 22: 335–355.Google Scholar
  70. Holst-Jensen, A., Kohn, L.M., and Schumacher, T. 1997. Nuclear rDNA phylogeny of the Sclerotiniaceae. Mycologia, 89: 885–899.Google Scholar
  71. Huang, R., Kranz, J., and Welz, H.G. 1995. Virulence gene frequency change in Erysiphe graminis f sp. Hot-dei due to selection by non-corresponding barley mildew resistance genes and hitchhiking. J. Phytopathol. 143: 287–294.Google Scholar
  72. Irwin, J.A.G., Cahill, D.M., and Drenth, A. 1995. Phytophthora in Australia. Aust. J. Agric. Res. 46: 1311–1337.Google Scholar
  73. Isabel, N., Beaulieu, J., and Bousquet, J. 1995. Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc. Natl. Acad. Sci. USA. 92: 6369–6373.Google Scholar
  74. Jacobson, D.J., and Gordon, T.R. 1990. Variability of mitochondrial DNA as an indicator of the relationships between populations of Fusarium oxysporum f. sp. melonis. Mycol. Res. 94: 734–744.Google Scholar
  75. Jacobson, K.M., Miller, O.K., and Turner, B.J. 1993. Randomly amplified polymorphic DNA markers are superior to somatic incompatibility tests for discriminating genotypes in natural populations of the ectomycorrhizal fungus Suillus granulatus. Proc. Natl. Acad. Sci. USA. 90: 9159–9163.Google Scholar
  76. Karlman, M., Hansson, P., and Witzell, J. 1994. Scleroderris canker on lodgepole pine introduced in northern Sweden. Can. J. For. Res. 24: 1948–1959.Google Scholar
  77. Keim, P., Schupp, J.M., Travis, S.E., Clayton, K., Zhu, T., Shi, L.A., Ferreira, A., and Webb, D.M. 1997. A high-density soybean genetic map based on AFLP markers. Crop Science, 37: 537–543.Google Scholar
  78. Keller, S.M., McDermott, J.M., Pettway, R.E., Wolfe, M.S., and McDonald, B.A. 1997. Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (anamorph Stagonospora nodorum). Phytopathology, 87: 353–358.PubMedGoogle Scholar
  79. Kile, G.A. 1983. Identification of genotypes and the clonal development of Anvillaria luteobubalina Watling and Kile in eucalypt forests. Aust. J. Bot. 31: 657–671.Google Scholar
  80. Kile, G.A. 1986. Genotypes of Armillaria hinnulea in wet sclerophyll eucalypt forest in Tasmania. Trans. Br. Mycol. Soc. 87: 312–314.Google Scholar
  81. Kistler, H.C., and Miao, V.P.W. 1992. New modes of genetic change in filamentous fungi. Annu. Rev. Phytopathol. 30: 131–152.Google Scholar
  82. Kohli, Y., Brunner, L.J., Yoell, H., Milgroom, M.G., Anderson, J.B., Morrall, R.A.A., and Kohn, L.M. 1995. Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Mol. Ecol. 4: 69–77.Google Scholar
  83. Kohli, Y., and Kohn, L.M. 1998. Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet. Biol. 23: 139–149.Google Scholar
  84. Kohn, L.M. 1992. Developing new characters for fungal systematics: an experimental approach for determining the rank of resolution. Mycologia, 84: 139–153.Google Scholar
  85. Leslie, J.F. 1993. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 31: 127–150.Google Scholar
  86. Leuchtmann, A., and Clay, K. 1989. Isozyme variation in the fungus Atkinsonella hypoxylon within and among populations of its host grasses. Can. J. Bot. 67: 2600–2607.Google Scholar
  87. Lewis, K.J., and Hansen, E.M. 1991. Vegetative compatibility groups and protein electrophoresis indicate a role for basidiospores in spread of Inonotus tomentosus in spruce forests of British Columbia. Can. J. Bot. 69: 1756–1763.Google Scholar
  88. Lewontin, R.C. 1995. The detection of linkage disequilibrium in molecular sequence data. Genetics, 140: 377–388.PubMedGoogle Scholar
  89. Levy, M., Romao, J., Marchetti, M.A., and Hamer, J.E. 1991. DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell, 3: 95–102.PubMedGoogle Scholar
  90. Loegering, W.Q. 1951. Survival of races of wheat stem rust in mixtures. Phytopathology, 41: 56–65.Google Scholar
  91. Lovic, B.R., Martyn, R.D., and Miller, M.E. 1995. Sequence analysis of the ITS regions of rDNA in Monosporascus spp. to evaluate its potential for PCR-mediated detection. Phytopathology, 85: 655–661.Google Scholar
  92. Lu, B.C.K. 1996. Chromosomes, mitosis, and meiosis. In: Fungal genetics: principles and practice, Bos, C.J. (ed), Marcel Dekker, New York, pp. 119–176.Google Scholar
  93. Lynch, M. 1990. The similarity index and DNA fingerprinting. Mol. Biol. Evol. 7: 478–484.Google Scholar
  94. Lynch, M., and Milligan, B. 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91–99.Google Scholar
  95. Majer, D., Mithen, R., Lewis, B.G., Vos, P., and Oliver, R.P. 1996. The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol. Res. 100: 1107–1111.Google Scholar
  96. Marçais, B., Martin, F., and Delatour, C. 1998. Structure of Collybia fitsipes populations in two infected oak stands. Mycol. Res. 102: 361–367.Google Scholar
  97. McDermott, J.M., and McDonald, B.A. 1993. Gene flow in plant pathosystems. Annu. Rev. Phytopathol. 31: 353–373.Google Scholar
  98. McDonald, B., McDermott, J., Goodwin, S., and Allard, R. 1989. The population biology of host-pathogen interactions. Annu. Rev. Phytopathol. 27: 77–94.Google Scholar
  99. McDonald, B.A., and Martinez, J.P. 1991. DNA fingerprinting of the plant pathogenic fungus Mycosphaerella graminicola (anamorph Septoria trinci). Exp. Mycol. 15: 146–158.Google Scholar
  100. Menges, E.S., and Loucks, O.L. 1984. Modelling a disease-caused patch disturbance: oak wilt in the midwestern United States. Ecology, 65: 487–498.Google Scholar
  101. Mewes, H.W., Albermann, K., Bahr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., and Zollner, A. 1997. Overview of the yeast genome. Nature, 387 (Suppl.): 7–65.PubMedGoogle Scholar
  102. Mewes, H.W., Hani, J., Pfeiffer, F., and Frishman, D. 1998. MIPS: a database for protein sequences and complete genomes. Nucl. Acid Res. 26: 33–37.Google Scholar
  103. Meyer, W., Koch, A., Niemann, C., Beyermann, B., Epplen, J.T., and Börner, T. 1991. Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr. Genet. 19: 239–242.Google Scholar
  104. Meyer, W., Morawetz, R., Börner, T., and Kubicek, C.P. 1992. The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate. Curr. Genet. 21: 27–30.Google Scholar
  105. Micales, J.A., and Bonde, M.R. 1995. Isozymes: methods and applications. In: Molecular Methods in Plant Pathology, Singh, R P and Singh, U.S. (eds), Lewis Publishers Inc, Boca Raton, pp. 115–130.Google Scholar
  106. Milgroom, M.G. 1995. Population biology of the chestnut blight fungus, Cryphonectria parasitica. Can. J. Bot. 73 (Suppl. 1): S311 - S319.Google Scholar
  107. Milgroom, M.G. 1996. Recombination and the multilocus structure of fungal populations. Annu. Rev. Phytopathol. 34: 457–477.Google Scholar
  108. Milgroom, M.G., and Lipari, S.E. 1995. Spatial analysis of nuclear and mitochondrial RFLP genotypes in populations of the chestnut blight fungus, Cryphonectria parasitica. Mol. Ecol. 4: 633–642.Google Scholar
  109. Milgroom, M.G., Lipari, S.E., Ennos, R.A., and Liu, Y.C. 1993. Estimation of the outcrossing rate in the chestnut blight fungus, Cryphonectria parasitica. Heredity, 70: 385–392.Google Scholar
  110. Milgroom, M.G., Lipari, S.E., and Powell, W.A. 1992. DNA fingerprinting and analysis of population structure in the chestnut blight fungus, Cryphonectria parasitica. Genetics, 131: 297–306.PubMedGoogle Scholar
  111. Milgroom, M.G., Wang, K., Zhou, Y., Lipari, S.E., and Kaneko, S. 1996. Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia, 88: 179–190.Google Scholar
  112. Mitchell, A.G., and Brasier, C.M. 1994. Contrasting structure of European and North American populations of Ophiostoma ulmi. Mycol. Res. 98: 576–582.Google Scholar
  113. Moody, S.F., and Tyler, B.M. 1990. Restriction enzyme analysis of mitochondrial DNA of the Apsergillus flavus group: A. flavus, A. parasiticas and A. nomius. Appl. Environ. Microbiol. 56: 2441–2452.Google Scholar
  114. Moore-Landecker, E. 1990. Fundamentals of the fungi. 3rd edition. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  115. Mueller, U.G., Lipari, S.E., and Milgroom, M.G. 1996. Amplified fragment length polymorphism (AFLP) fingerprinting of symbiotic fungi cultured by the fungus-growing ant Cyphomyurmex minutus. Mol. Ecol. 5: 119–122.Google Scholar
  116. Mylyk, O.M. 1976. Heteromorphism for heterokaryon incompatibility genes in natural populations of Neurospora crassa. Genetics, 83: 275–284.PubMedGoogle Scholar
  117. Namkoong, G. 1991. Maintaining genetic diversity in breeding for resistance in forest trees. Annu. Rev. Phytopathol. 29: 325–342.Google Scholar
  118. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  119. Neigel, J.E. 1997. A comparison of alternative strategies for estimating gene flow from genetic markers. Annu. Rev. Ecol. Syst. 28: 105–128.Google Scholar
  120. Newton, A.C. 1987. Markers in pathogen populations. In: Genetics and Plant Pathogenesis, Day, P.R. and Jellis, G.J. (eds), Blackwell Science, Oxford/London, pp. 187–194.Google Scholar
  121. Old, K.M., Dudzinski, M.J., and Bell, J.C. 1988. Isozyme variability in field populations of Phytophthora cinnamomi in Australia. Aust. J. Bot. 36: 355–360.Google Scholar
  122. Old, K.M., Moran, G.F., and Bell, J.C. 1984. Isozyme variability among isolates of Phytophthora cinnamomi from Australia and Papua New Guinea. Can. J. Bot. 62: 2016–2022.Google Scholar
  123. Parker, P.G., Snow, A.A., Schug, M.D., Booton, G.C., and Fuerst, P.A. 1998. What molecules can tell us about populations: Choosing and using a molecular marker. Ecology, 79: 361–382.Google Scholar
  124. Parmeter, J.R.J., Snyder, W.C., and Reichte, R.E. 1963. Heterokaryosis and variability in plant-pathogenic fungi. Annu. Rev. Phytopathol. 1: 51–76.Google Scholar
  125. Penner, G.A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K., Laroche, A., Scoles, G., S.J., M., and Fedak, G. 1993. Reproducibility of Random Amplified Polymorphic DNA (RAPD) analysis among laboratories. PCR Meth. Appl. 2: 341–345.Google Scholar
  126. Perkins, D.D., and Turner, B.C. 1988. Neurospora from natural populations: toward the population biology of a haploid eukaryote. Exp. Mycol. 12: 91–131.Google Scholar
  127. Piri, T. 1996. The spreading of the S type of Heterobasidion annosum from Norway spruce stumps to the subsequent tree stand. Eur. J. For. Path. 26: 193–204.Google Scholar
  128. Piri, T., Korhonen, K., and Sairanen, A. 1990. Occurrence of Heterobasidion annosum in pure and mixed spruce stands in southern Finland. Scand. J. For. Res. 5: 113–125.Google Scholar
  129. Podger, F.D. 1972. Phytophthora cinnamomi, a cause of lethal disease in indigenous plant communities in western Australia. Phytopathology, 62: 972–981.Google Scholar
  130. Pontecorvo, G. 1956. The parasexual cycle in fungi. Ann. Rev. Microbiol. 10: 393–400.Google Scholar
  131. Raper, J.R. 1960. The control of sex in fungi. Am. J. Bot. 47: 794–808.Google Scholar
  132. Rayner, A.D.M. 1991. The phytopathological significance of mycelial individualism. Annu. Rev. Phytopathol. 29: 305–323.Google Scholar
  133. Saville, B.J., Yoell, H., and Anderson, J.B. 1996. Genetic exchange and recombination in populations of the root-infecting fungus Armillaria gallica. Mol. Ecol. 5: 485–497.Google Scholar
  134. Scazzocchio, C. 1987. The natural history of fungal mitochondrial genomes. In: Evolutionary biology of the fungi, Rayner, A.D.M., Brasier, C.M. and Moore, D. (eds), Cambridge University Press, Cambridge, pp. 53–73.Google Scholar
  135. Shaw, C.G., Stage, A.R., and Webb, T.M. 1985. Development of a root rot subroutine for use with stand growth models of western forests. In: Proceedings 33rd Annual Western International Forest Disease Work Conference, September 24–27, 1985, Olympia, Washington, USA, pp. 48–54.Google Scholar
  136. Shaw, C.G.I., and Roth, L.F. 1976. Persistence and distribution of a clone of Armillaria mellea in a ponderasa pine forest. Phytopathology, 66: 1210–1213.Google Scholar
  137. Simon, L., Bousquet, J., Levesque, R.C., and Lalonde, M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363: 67–69.Google Scholar
  138. Simon, L., Lalonde, M., and Bruns, T.D. 1992. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58: 291–295.Google Scholar
  139. Smalley, E.B., and Guries, R.P. 1993. Breeding elms for resistance to Dutch elm disease. Annu. Rev. Phytopathol. 31: 325–352.Google Scholar
  140. Smith, J.M. 1994. Estimating the minimum rate of genetic transformation in bacteria. J. Evol. Biol. 7: 525–534.Google Scholar
  141. Smith, M.L., Bruhn, J.N., and Anderson, J.B. 1992. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature, 356: 428–431.Google Scholar
  142. Smith, M.L., Bruhn, J.N., and Anderson, J.B. 1994. Relatedness and spatial distribution of Armillaria genets infecting red pine seedlings. Phytopathology, 84: 822–829.Google Scholar
  143. Smith, M.L., Duchesne, L.C., Bruhn, J.N., and Anderson, J.B. 1990. Mitochondria) genetics in a natural population of the plant pathogen Armillaria. Genetics, 126: 575–582.PubMedGoogle Scholar
  144. Stanosz, G.R., Smith, D.R., Guthmiller, M.A., and Stanosz, J.C. 1997. Persistence of Sphaeropsis sapinea on or in asymptomatic shoots of red and jack pines. Mycologia, 89: 525–530.Google Scholar
  145. Stenlid, J. 1985. Population structure of Heterobasidion annosum as determined by somatic incompatibility, sexual incompatibility, and isozyme patterns. Can. J. Bot. 63:2268–2273.Google Scholar
  146. Stenlid, J. 1987. Controlling and predicting the spread of Heterobasidion annosum from infected stumps and trees of Picea abies. Scand. J. For. Res. 2: 187–198.Google Scholar
  147. Stukely, M.J.C., and Crane, C.E. 1994. Genetically based resistance of Eucalyptus marginata to Phytophthora cinnamomi. Phytopathology, 84: 650–656.Google Scholar
  148. Szmidt, A.E., Wang, X.-R., and Lu, M.-Z. 1996. Empirical assessment of allozyme and RAPD variation in Pinus sylvestris ( L) using haploid tissue analysis. Heredity, 76: 412–420.Google Scholar
  149. Taylor, J.W. 1986. Fungal evolutionary biology and mitochondrial DNA. Exp. Mycol. 10: 259269.Google Scholar
  150. Thrall, P.H., and Burdon, J.J. 1997. Host-pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. J. Ecol. 85: 743–753.Google Scholar
  151. Tinline, R.D., and MacNeill, B.H. 1969. Parasexuality in plant pathogenic fungi. Annu. Rev. Phytopathol. 7: 147–170.Google Scholar
  152. Tommenip, I.C., Barton, J.E., and Obrien, P.A. 1995. Reliability of RAPD fingerprinting of three basidiomycete fungi, Zaccaria, Hydnangium and Rhizoctonia. Mycol. Res. 99: 179–186.Google Scholar
  153. Tooley, P.W., Bunyard, B.A., Carras, M.M., and Hatziloukas, E. 1997. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Appl. Environ. Microbiol. 63: 1467–1475.Google Scholar
  154. Ullrich, R.C., and Raper, J.R. 1977. Evolution of genetic mechanisms in fungi. Taxon, 26: 169–179.Google Scholar
  155. Valent, B., and Chumley, F.G. 1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29: 443–467.Google Scholar
  156. Voorrips, R.E., Jongerius, M.C., and Kanne, H.J. 1997. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor. Appl. Genet. 94: 75–82.Google Scholar
  157. Vos, P., Rogers, R., Bleeker, M., Reijans, M., Vandelee, T., Homes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414.Google Scholar
  158. Wang, X.-R. 1997. Genetic variability in the canker pathogen fungus, Gremmeniella abietina. Contribution of sexual compared with asexual reproduction. Mycol. Res. 101: 1195–1201.Google Scholar
  159. Wang, X.-R., Ennos, R.A., Szmidt, A.E., and Hansson, P. 1997. Genetic variability in the canker pathogen fungus, Gremmeniella abietina. 2. Fine-scale investigation of the population genetic structure. Can. J. Bot. 75: 1460–1469.Google Scholar
  160. Weir, B.S. 1990. Genetic data analysis. Sinauer Assoc. Inc., Sunderland, Mass.Google Scholar
  161. Welsh, J., and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213–7218.Google Scholar
  162. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.Google Scholar
  163. Wills, R.T. 1993. The ecological impact of Phytophthora cinnamomi in the Stirling Range National Park, Western Australia. Aust. J. Ecol. 10: 55–66.Google Scholar
  164. Wolf, K. 1996. Mitochondrial Genetics of Saccharomyces cerevisiae. The way from genetic crosses to transposable elements. In: Fungal Genetics: Principles and Practice, Bos, C.J. (ed), Marcel Dekker, New York, pp 247–257.Google Scholar
  165. Worrall, J.J. 1994. Population structure of Armillaria species in several forest types. Mycologia, 86: 401–407.Google Scholar
  166. Wright, J.P., and Marks, G.C. 1970. Loss of merchantable wood in radiata pine associated with infection by Diplodia pinea. Aust. For. 34: 107–119.Google Scholar
  167. Zabeau, M., and Vos, P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application No. 92402629. 7.Google Scholar
  168. Zazar, R.N., Hu, X., Schmidt, J., Culham, D., and Robb, J. 1991. Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of verticillium wilt pathogens. Physiol. Mol. Plant Pathol. 39: 1–11.Google Scholar
  169. Zeigler, R.S., Scott, R.P., Leung, H., Bordeos, A.A., Kumar, J., and Nelson, R.J. 1997. Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopatology, 87: 284–294.Google Scholar
  170. Zeze, A., Hosny, M., Gianinaipearson, V., and Dulieu, H. 1996. Characterization of a highly repeated DNA sequence (SC1) from the arbuscular mycorrhizal fungus Scutellospora castanea and its detection in planta. Appl. Environ. Microbiol. 62: 2443–2448.Google Scholar
  171. Zimmer, M., Luckemann, G., Lang, B.F., and Wolf, K. 1984. The mitochondrial genome of fission yeast Schizosaccharomyces pombe. 3. Gene mapping in strain EF1 (CBS 356) and analysis of hybrids between strains EF1 and ade 7–50h-. Mol. Gen. Genet. 196: 473–481.Google Scholar
  172. Zwolinski, J.B., Swart, W.J., and Wingfield, M.J. 1990. Economic impact of a post-hail outbreak of dieback induced by Sphaeropsis sapinea. Eur. J. For. Path. 20: 405–411.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Xiao-Ru Wang
    • 1
  • Alfred E. Szmidt
    • 1
  1. 1.Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesSweden

Personalised recommendations