Advertisement

Mapping Quantitative Traits in Forest Trees

  • Mitchell M. Sewell
  • David B. Neale
Part of the Forestry Sciences book series (FOSC, volume 64)

Abstract

Classic Mendelian genetic analysis relies on a simple relationship between genotype and phenotype. The phenotypic differences among individuals in a population are directly attributable to their genotype at a single genetic locus (e.g., flower color in peas). However, most traits of economic interest in forest trees do not fall into discrete phenotypic classes, but instead result from the collective action of multiple genes which exhibit quantitative variation. Traditional analysis of quantitative traits relies on phenotypic variances and family means to estimate heritabilities and variance components, within the context of environmental factors (Zobel and Talbert 1984). Although quantitative genetic analyses assume polygenic inheritance, little can be determined in regards to the specific genes involved.

Keywords

Quantitative Trait Locus Mapping Population Forest Tree Wood Density Quantitative Trait Locus Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahuja, M. R., M. E. Devey, A. T. Groover, K. D. Jermstad, and D. B. Neale, 1994. Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor. Appl. Genet. 88: 279–282.CrossRefGoogle Scholar
  2. Aitken, K., G. Smail, J. Drenth, Y. Li, C.-H. Kao, and R. Teasdale, 1997. Detection of quantitative trait loci (QTL) for cone production in Pinus radiata, In Burdon, R. D., and J. M. Moore [edsl, Proceedings of IUFRO ‘87: Genetics of Radiata Pine. December 1–5, 1997. Rotorua, New Zealand. FRI Bulletin No. 203. Pp. 337–341.Google Scholar
  3. Barreneche, T., C. Bodénès, C. Lexer, J. F. Trontin, S. Fluchs, R. Streiff, C. Plomion, G. Roussel, H. Steinkellner, K. Burg, J. M. Favre, J. Glössl, and A. Kremer, 1998. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, isozyme and rDNA markers. Theor. Appl. Genet. 97: 1090–1103.CrossRefGoogle Scholar
  4. Beavis, W. D., D. Grant, M. Albertsen, and R. Fincher, 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141–145.Google Scholar
  5. Beavis, W. D., 1995. The power and deceit of QTL experiments: lessons from comparative QTL studies. Proc. 49th Ann. Corn and Sorghum Indus. Res. Conf. 1994. Pp. 304–312.Google Scholar
  6. Bennetzen, J. L., and M. Freeling, 1993. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends In Genetics 9: 259–261.PubMedCrossRefGoogle Scholar
  7. Bradshaw, H. D., and G. S. Foster, 1992. Marker-aided selection and propagation systems in trees: advantages of cloning for studying quantitative inheritance. Can. J. For. Res. 22: 1044–1049.CrossRefGoogle Scholar
  8. Bradshaw, H. D., Jr., M. Villar, B. D. Watson, K. G. Otto, S. Stewart, and R. F. Stelller, 1994. Molecular genetics of growth and development in Populus. III. A genetic map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor. Appl. Genet. 89: 551–558.Google Scholar
  9. Bradshaw, H. D., and D. Grattapaglia, 1994. QTL mapping in interspecific hybrids of forest trees. Forest Genetics 1: 191–196.Google Scholar
  10. Bradshaw, H. D., and R. F. Stettler, 1995. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139: 963–973.Google Scholar
  11. Byrne, M., J. C. Murrell, J. V. Owen, P. Kriedemann, E. R. Williams, and G. F. Moran, 1997a. Identification and mode of action of quantitative loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet. 93: 674–681.Google Scholar
  12. Byrne, M., J. C. Murrell, J. V. Owen, E. R. Williams, and G. F. Moran, 1997b. Identification and mode of action of quantitative loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet. 95: 975–979.CrossRefGoogle Scholar
  13. Cervera, M. T., C. Plomion, and C. Malpica, 1999. Molecular markers and genome mapping in woody plants. In Jain,S. M., and S. C. Minocha reds], Molecular Biology of Woody Plants,Kluwer Academic Publishers, The Nederlands. (see Table of Contents in this publication).Google Scholar
  14. Darvasi, A., and M. Soller, 1992. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 85: 253–359.CrossRefGoogle Scholar
  15. Darvasi, A., and M. Soller, 1994. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138: 1365–1373.PubMedGoogle Scholar
  16. Dayanandan, S., O. P. Rajora, and K. S. Bawa, 1998. Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor. Appl. Genet. 96: 950–956.Google Scholar
  17. Devey, M. E., M. M. Sewell, and D. B. Neale, 1996. A comparison of loblolly and radiata pine genomes using RFLP markers, In Dieters, M. J., A. C. Matheson, D. G. Nildes, C. E. Harwood and S. M. Walker reds], Tree Improvement for Sustainable Tropical Forestry. Proc. QFRI-IUFRO Conf., Caloundra, Queensland, Australia. 27 Oct.–1 Nov., 1996. Queensland Forestry Research Institute, Gympie, Queensland, Australia. Pp. 478–480.Google Scholar
  18. Doebley, J., 1993. Genetics, development and plant evolution. Current Opinion on Genetic Development 3: 865–872.CrossRefGoogle Scholar
  19. Edwards, M. D., C. W. Stuber, and J. F. Wendel, 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. 1. Numbers, genomic distribution and types of gene action. Genetics 116: 113–125.Google Scholar
  20. Emebiri, L., M. Devey, A. Matheson, and M. Slee, 1997. Linkage of RAPD markers to NESTUR, a stem growth index in radiata pine seedlings. Theor. Appl. Genet. 95: 119–124.Google Scholar
  21. Grattapaglia, D., F. Bertolucci, and R. Sederoff, 1995. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor. Appl. Genet. 90: 933–947.CrossRefGoogle Scholar
  22. Grattapaglia, D., F. Bertolucci, R. Penchel, and R. Sederoff, 1996. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144: 1205–1214.PubMedGoogle Scholar
  23. Groover, A., M. Devey, T. Fiddler, J. Lee, R. Megraw, T. Mitchell-Olds, B. Sherman, S. Vujcic, C. Williams, and D. Neale, 1994. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138: 1293–1300.PubMedGoogle Scholar
  24. Harry, D. E., B. Temesgen, and D. B. Neale, 1998. Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones. Theor. Appl. Genet. 97: 327–336.Google Scholar
  25. Haley, C. S., S. A. Knott, and J.-M. Eisen, 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195–1207.PubMedGoogle Scholar
  26. Kaya, Z., M. Sewell, and D. Neale, 1999. Identification of quantitative trait loci influencing annual height-and diameter-increment growth in loblolly pine. Theor. Appl. Genet. in press.Google Scholar
  27. Knott, S., D. Neale, M. Sewell, and C. Haley, 1997. Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor. Appl. Genet. 94: 810–820.CrossRefGoogle Scholar
  28. Kubisiak, T. L., C. D. Nelson, J. Nowak, and A. L. Friend, 1999. Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. J. Sus. For., in press.Google Scholar
  29. Kubisiak, T. L., F. V. Hebard, C. D. Nelson, J. Mang, R. Bernatzky, H. Huang, S. L. Anagnostakis, and R. L. Doudrick, 1997a. Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87: 751–759.PubMedCrossRefGoogle Scholar
  30. Kubisiak, T., C. Nelson, and M. Stine, 1997b. RAPD mapping of genomic regions influencing early height growth in longleaf pine x slash pine F, hybrids. Proc. 24th South. For. Tree Improv. Conf. June 9–12, 1997. Orlando, FL. Pp. 198–206.Google Scholar
  31. Lande, R., and R. Thompson, 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756.PubMedGoogle Scholar
  32. Lander, E. S., and D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.PubMedGoogle Scholar
  33. Lander, E. S., and L. Kruglyak 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247.Google Scholar
  34. Neale, D. B., and C. G. Williams, 1991. Restriction fragment length polymorphism mapping in conifers and applications to forest tree genetics and tree improvement. Can. J. For. Res. 21: 545–554.CrossRefGoogle Scholar
  35. Neale, D. B., and D. E. Harry, 1994. Genetic mapping in forest trees: RFLPs, RAPDs and beyond. AgBiotech News and Information 6: 107N - 114N.Google Scholar
  36. Neale, D., K. Jermstad, M. Sewell, and N. Wheeler, 1997. Progress towards detecting and verifying QTLs for wood property traits in loblolly pine and adaptive traits in Douglas-fir. Proceedings IUFRO Conf., Quebec City, Canada, Aug. 12–16. Pp. 52–56.Google Scholar
  37. Neale, D. B., 1998. Molecular genetic approaches to measuring and conserving adaptive genetic diversity. In Zencirci et al. [edsi, The Proceedings of International Symposium on In Situ Conservation of Plant Genetic Diversity, CRIFC, Turkey. Pp. 385–390.Google Scholar
  38. Newcombe, G., and H. D. Bradshaw, 1996. Quantitative trait loci conferring resistance in hybrid poplar to Septoria populicola, the cause of leaf spot. Can. J. For. Res. 26: 1943–1950.Google Scholar
  39. O’Malley, D. M., and S. E. McKeand, 1994. Marker assisted selection for breeding value in forest trees. Forest Genetics 1: 207–218.Google Scholar
  40. Paterson, A. H., S. Damon, J. D. Hewitt, D. Zamir, H. D. Rabinowitch, S. E. Lincoln, E. S. Lander, and S. D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparisons across species, generations, and environments. Genetics 127: 181–197.PubMedGoogle Scholar
  41. Plomion, C., and C.-É. Durel, 1996. Estimation of the average effects of specific alleles detected by the pseudo-testcross QTL mapping strategy. Genet. Sel. Evol. 28: 223–235.Google Scholar
  42. Plomion, C., C: E. Durel, and D. O’Malley, 1996a. Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor. Appl. Genet. 93: 849–858.Google Scholar
  43. Plomion, C., A. Yani, and A. Marpeau, 1996b. Genetic determinism of 83-carene in maritime pine using random amplified polymorphic DNA ( RAPD) markers. Genome 39: 1123–1127.Google Scholar
  44. Plomion, C., P. Hurme, J.-M. Frigerio, M. Ridolphi, D. Pot, C. Pionneau, C. Avila, F. Gallardo, H. David, G. Neutlings, M. Campbell, F. M. Canovas, O. Savolainen, C. Bodénès, and A. Kremer, 1998. Developing SSCP markers in two Pinus species. Mol. Bred . 5: 21–31.CrossRefGoogle Scholar
  45. Rothschild, M. F., and M. Soller, 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13–20.Google Scholar
  46. Sewell, M. M., B. K. Sherman, and D. B. Neale, 1999. A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151: 321–330.Google Scholar
  47. Strauss, S. H., R. Lande, and G. Namkoong, 1992. Limitations of molecular-marker-aided selection in forest tree breeding. Can. J. For. Res. 22: 1050–1061.Google Scholar
  48. Tanksley, S. D., and J. D. Hewitt, 1988. Use of molecular markers in breeding for soluble solids in tomato: a re-examination. Theor. Appl. Genet. 75: 811–823.CrossRefGoogle Scholar
  49. Thoday, J. M., 1961. Location of polygenes. Nature 191: 368–370.CrossRefGoogle Scholar
  50. Verhaegen, D., C. Plomion, J.-M. Gion, M. Poitel, P. Costa, and A. Kremer, 1997. Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor. Appl. Genet. 95: 597–608.CrossRefGoogle Scholar
  51. Wilcox, P. L., T. F. Richardson, and S. D. Carson, 1997. Nature of quantitative trait variation in Pinus radiata: insights from QTL detection experiments. In Burdon, R. D., and J. M. Moore [edsj, Proceedings of IUFRO ‘87: Genetics of Radiata Pine. December 1–5, 1997. Rotorua, New Zealand. FRI Bulletin No. 203. Pp. 304–312.Google Scholar
  52. Williams, C. G., and D. B. Neale, 1992. Conifer wood quality and marker-aided selection: a case study. Can. J. For. Res. 22: 1009–1017.CrossRefGoogle Scholar
  53. Wu, R., H. D. Bradshaw, and R. F. Stettler, 1997. Molecular genetics of growth and development in Populus (Salicaceae). 5. Mapping quantitative trait loci affecting leaf variation. Amer. J. Bot. 84: 143–153.Google Scholar
  54. Zobel, B. Z., and J. T. Talbert, 1984. Applied Tree Improvement. John Wiley and Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Mitchell M. Sewell
    • 1
  • David B. Neale
    • 1
    • 2
  1. 1.Pacific Southwest Research Station, Institute of Forest GeneticsUSDA Forest ServicePlacervilleUSA
  2. 2.Department of Environmental HorticultureUniversity of CaliforniaDavisUSA

Personalised recommendations