Skip to main content

Molecular Biology and Biochemistry of Proline Accumulation in Developing Grape Berries

  • Chapter
Molecular Biology & Biotechnology of the Grapevine

Abstract

In recent years, the value and competitive nature of the grape and wine industry has led to an increasing emphasis on producing quality fruit for the production of quality wines. In general terms the “quality” of a berry is determined by its composition. The reviewed research in this paper investigates an important aspect of grape composition, which is the accumulation of nitrogen in the form of free amino acids1, with an emphasis on the molecular biology and biochemistry of the accumulation of free proline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspinall, D. and L.G. Paleg (1981) Proline accumulation: Physiological aspects. In: The Physiology and Biochemistry of Drought Resistance in Plants, L.G. Paleg and D. Aspinall, (Eds). Academic Press, New York, pp. 205–241.

    Google Scholar 

  • Brandriss, M.C. and B. Magasanik (1980) Proline is an essential intermediate in arginine degradation in Saccharomyces cerevisae. J. Bacteriol. 143: 1403–1410.

    PubMed  CAS  Google Scholar 

  • Brugiere, N., Dubois, F., Limami, A.M., Lelandis, M., Roux, Y., Sangwan, R.S, and B. Hire] (1999) Glutamine synthetase in phloem plays a major role in controlling proline production. Plant Cell 11: 1995–2011.

    PubMed  CAS  Google Scholar 

  • Buttrose, M.S., Hale, C.R., and W.M. Kliewer (1971) Effect of temperature on the composition of Cabernet Sauvignon berries. Am. J. Enol. Vitic. 22: 71–75.

    CAS  Google Scholar 

  • Castor, J.G.B. (1953) The free amino acids in musts and wines. 1. Microbiological estimation of fourteen amino acids in California grape musts. Food. Res. 18: 139–145.

    Article  CAS  Google Scholar 

  • Chiang, H.-H. and A.M. Dandekar (1995) Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant. Cell. and Environ. 18: 1280–1290.

    Article  CAS  Google Scholar 

  • Clements, R.L. and H.V. Leland (1962) An ion-exchange study of the free amino acids in the juices of six varieties of citrus. J. Food. Sci. 27: 20–25.

    Article  CAS  Google Scholar 

  • Davies, C. and S.P. Robinson (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterisation of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol. 122: 803–812.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A.J. and D.P.S. Verma (1990) A soybean gene encoding Al -pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Mol. Gen. Genet. 221: 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A.J. and D.P.S. Verma (1993) Proline biosynthesis and osmoregulation in plants. Plant. J. 4: 215–223.

    Article  CAS  Google Scholar 

  • Delauney, A.J., Hu, C.-A.A., Kishor, P.B.K., and D.P.S. Verma (1993) Cloning of ornithine-8aminotransferase cDNA from Vigna aconitifolia by Trans-complementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem. 268: 18673–18678.

    PubMed  CAS  Google Scholar 

  • Downton, W.J.S. and B.R. Loveys (1978) Compositional changes during grape berry development in relation to abscisic acid and salinity. Aust. J. Plant. Physiol. 5: 415–423.

    Article  CAS  Google Scholar 

  • Downton, W.J.S. and B.R. Loveys (1981) Abscisic acid content and osmotic relations of salt stressed grapevine leaves. Aust. J. Plant. Physiol. 8: 443–452.

    Article  CAS  Google Scholar 

  • Flasinski, S. and J. Rogozinska (1985) Effect of water deficit on proline accumulation, protein and chlorophyll content during flowering and seed formation in winter rape. Acta Agrobot 38: 11–21

    CAS  Google Scholar 

  • Ford, C.M. and P.B. Hej (1998) Multiple glucosyltransferase activities in the grapevine V vinifera L. Aust. J. Grape Wine Res. 4: 48–58.

    Article  CAS  Google Scholar 

  • Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A., and L.N. Csonka (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for A’ -pyrroline-5carboxylate synthetase. Plant. Physiol. 118: 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rios, M., Fujita, T., LaRosa, P.C., Locy, R.D., Clithero, J.M., Bressan, R.A., and L.N. Csonka (1997) Cloning of a polycistronic cDNA from tomato encoding glutamyl kinase and glutamyl phosphate reductase. Proc. Natl. Acad. Sei. U.S.A. 94: 8249–8254.

    Article  CAS  Google Scholar 

  • Ghisi, R., Jannini, B., and C. Passera (1984) Changes in the activities of enzymes involved in nitrogen and sulphur assimilation during leaf and berry development of V. vinifera. Vitis 23: 257–267.

    CAS  Google Scholar 

  • Gholami, M. (1996) Biosynthesis and translocation of secondary metabolite glycosides in the grapevine Vvinifera L. Ph.D. Thesis. Adelaide, Australia.

    Google Scholar 

  • Ginzberg, I., Stein, H., Kapulnuk, Y., Szabados, L., Strizhov, N., Schell, J., Konez, C., and A. Zilberstein (1998) Isolation and characterisation of two different cDNAs of A’-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant. Mol. Biol. 38: 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Goldspink, B. and C. Gordon (1991) Responses of V. vinifera cv Sauvignon blanc grapevines to timed applications of nitrogen fertilisers. In: Proceedings of the International Symposium on Nitrogen in Grapes and Wine, J.M. Rantz, (Ed.). American Society for Enology and Viticulture, Davis, California, pp. 255–258.

    Google Scholar 

  • Hare, P.D. and W.A. Cress (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant. Growth Regul. 21: 79–102.

    Article  CAS  Google Scholar 

  • Harwood, C.R. and S. Baumberg (1977) Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 100: 177–188.

    PubMed  CAS  Google Scholar 

  • Henschke, P.A. and V. Jiranek (1993) Yeast metabolism of nitrogen compounds. In: Wine Microbiology and Biotechnology, G.H. Fleet, (Ed.). Harwood Academic Publishers, Switzerland, pp. 77–164.

    Google Scholar 

  • Hu, C.A., Delauney, A.J., and D.P.S. Verma (1992) A bifunctional enzyme A’ -pyrroline-5-carboxylate synthetase catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U.S.A. 89: 9354–9358.

    Article  PubMed  CAS  Google Scholar 

  • Hua, X.-J., van de Cotte, B., Van Montagu, M., and N. Vcrbruggen (1997) Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. Plant Physiol. 114: 1215–1224.

    Article  PubMed  CAS  Google Scholar 

  • Huang, A.C. and A.J. Cavalieri (1979) Proline oxidase and water stress-induced proline accumulation in spinach leaves. Plant Physiol 63: 531–535.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Z. and C.S. Ough (1989) Effect of vineyard locations, varieties and rootstocks on the juice amino acid composition of several cultivars. Am. J. Enol. Vitic. 40: 135–139.

    CAS  Google Scholar 

  • Huang, Z. and C.S. Ough (1991) Amino acid profiles of commercial grape juices and wines. Am. J. Enol. Vitic. 42: 261–267.

    CAS  Google Scholar 

  • Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., and K. Shinozaki (1997) Characterisation of the gene for A’ -pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant. Mol. Biol. 33: 857–865.

    Article  PubMed  CAS  Google Scholar 

  • Jiranek, V., Eglinton, J.M., Gockowiak, H., Langridge, P., and P.A. Henschke (1993) Nitrogen: A critical regulator of fermentation. In: Proceedings-Eighth Australian Wine Industry Technical Conference, C.S. Stockley, R.S. Johnstone, P.A. Leske, and T.H. Lee (Eds). Wine Titles, Adelaide, South Australia, pp. 133–141.

    Google Scholar 

  • Kanellis, A.K. and K.A. Roubelakis-Angelakis (1993) Grape. In: The Biochemistry of Fruit Ripening, G.B. Seymour, J.E. Taylor, and G.A Tucker (Eds). Chapman and Hall, London. pp. 189–234.

    Chapter  Google Scholar 

  • Kim, H.R., Rho H.W., Park J.W., Park B.H., Kim J.S., and M.W. Lee (1994) Assay of ornithine aminotransferase with ninhydrin. Anal. Biochem. 223: 205–207.

    Article  PubMed  CAS  Google Scholar 

  • Kishor, P.B.K., Hong, Z., Miao, G.-H., Hu, C.-A. A., and D.P.S. Verma (1995) Overexpression of A’–pyrroline-5-carboxylate synthetase increases praline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387–1394.

    PubMed  CAS  Google Scholar 

  • Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and K. Shinozaki (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8: 1323–1335.

    PubMed  CAS  Google Scholar 

  • Kliewer, W.M. (1968) Changes in the concentration of free amino acids in grape berries during maturation. Am. J. Enol. Vitic. 19: 166–174.

    CAS  Google Scholar 

  • Kliewer, W.M. (1969) Free amino acids and other nitrogenous substances of table grape varieties. J. Food. Sei. 34: 274–278.

    Article  CAS  Google Scholar 

  • Kliewer, W.M. (1970) Free amino acids and other nitrogenous fractions in wine grapes. J. Food Sei. 35: 17–21

    Article  CAS  Google Scholar 

  • Kliewer, W.M. (1971) Effect of nitrogen on growth and composition of fruits from Thompson Seedless grapevines. J. Am. Soc. Hort. Sci. 96: 816–819.

    CAS  Google Scholar 

  • Kliewer, W.M. and C.S. Ough (1970) The effect of leaf area and crop level on the concentration of amino acids and total nitrogen in Thompson Seedless grapes. Vitis 9: 196–206.

    Google Scholar 

  • Lafon-Lafourcade, S. and G. Guimberteau (1962) Evolution des aminoacides au cours de la maturation des raisons. Vitis 3: 130–135.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1996) Characterisation of V. vinifera L. glutamine syn- thetasc and molecular cloning of eDNAs for the cytosolic enzyme. Plant. Mol. Biol. 31: 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1997) Molecular characterization of ferredoxin dependent glutamate synthase from Vitis vinifera L. Physiol. Plant. 101: 220–228.

    Article  CAS  Google Scholar 

  • Mazelis, M. and L. Fowden (1969) Conversion of ornithine into praline in unstressed and salt-stressed wheat. J. Exp. Bot. 39: 421–430.

    Google Scholar 

  • Nakashima, K., Satoh R., Kiyosue T., Yamaguchi-Shinazoki K., and K. Shinazoki (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol. 118: 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  • Nanjo, T., Kobayashi M., Yoshiba Y., Sanada Y., Wada K., Tsukaya H., Kakubari Y., Yamaguchi-Shinozaki K., and K. Shinozaki (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Nassar, A.R. and W.M. Kliewer (1966) Free amino acids in various parts of V vinifera at different stages of development. Proc. Amer. Soc. Hort. Sci. 89: 281–294.

    CAS  Google Scholar 

  • Ough, C.S. (1969) Ammonia content of California grapes. Am. J. Enol. Vitic. 20: 213–220.

    CAS  Google Scholar 

  • Ough, C.S. (1988) Acids and amino acids in grapes and wine. In: Modern Methods of Plant Analysis, J.F. Jackson and H.F. Liskens (Eds). Volume 6, Wine Analysis. Springer-Verlag, Berlin, pp. 92–146.

    Google Scholar 

  • Ough, C.S. (1991) Influence of nitrogen compounds in grapes on ethylcarbamate formation in wines. In: Proceedings of the International Symposium of Nitrogen in Grapes and Wines (Seattle, 1991 ), J Rantz (Ed.). Davis CA, pp. 165–171.

    Google Scholar 

  • Ough, C.S. and R.M. Stashak (1974) Further studies on proline concentration in grapes and wines. Am. J. Enol. Vitic. 25: 7–12.

    CAS  Google Scholar 

  • Peng, Z., Lu Q. and D.P.S. Verma (1996) Reciprocal regulation of A’ -pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet. 253: 334–341.

    PubMed  CAS  Google Scholar 

  • Rhodes, D., Verslues, P.E., and R.E. Sharp (1999) Role of amino acids in abiotic stress resistance. In: Plant Amino Acids, Singh B.K. (Ed.). Biochemistry and Biotechnology, Chapter 12, Marcel Dekker, New York, USA, pp. 319–35b.

    Google Scholar 

  • Roosens, N.H.C.J., Thu, T.T., Iskandar, H.M., and M. Jacobs (1998) Isolation of the ornithine-Saminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117: 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Roosens, N.H., Willem, R., Li, Y., Verbruggen, 1., Biesemans, M., and M. Jacobs (1999) Proline metabolism in the wild-type and in a salt-tolerant mutant of Nicotiana plumbaginifolia studied by ‘3C-nuclear magnetic resonance imaging. Plant Physiol. 121: 1281–1290.

    Google Scholar 

  • Roubelakis-Angelakis, K.A. and W.M. Kliewer (1981) Influence of nitrogen fertilization on activities of ornithine transcarbamoylase and arginase in Chenin blanc berries at different stages of development. Vitis 20: 130–15.

    CAS  Google Scholar 

  • Savouré, A., Jaoua S., Hua X.-J., Ardiles W., Van Montagu M., and N. Verbruggen (1995) Isolation, characterisation, and chromosomal location of a gene encoding the A’ -pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett. 372: 13–19.

    Article  PubMed  Google Scholar 

  • Spayd, S.E. and J. Andersen-Bagge (1996) Free amino acid composition of grape juice from 12 V. vinifera cultivars in Washington. Am. J. Enol. Vitic. 47: 389–402.

    CAS  Google Scholar 

  • Spayd, S.E., Wample, R.L., Evans, R.G., Stevens, R.G., Seymour, B.J., and C.W. Nagel (1994) Nitrogen fertilisation of White Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic. 45: 34–42.

    CAS  Google Scholar 

  • Splittstoesser, W.E. and L. Fowden (1973) Ornithine transaminase from Cucurbita maxima cotyledons. Phytochemistry 12: 785–790.

    Article  CAS  Google Scholar 

  • Stines, A.P. (1999) Expression of the Key Proline Biosynthetic Enzymes P5CS and OAT during Grape Berry Development. Ph.D. Thesis, University of Adelaide, Adelaide, Australia.

    Google Scholar 

  • Stines, A.P., Naylor, D.J., Iloj, P.B., and R. van Heeswijck (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in levels of A’-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol. 120: 923–931.

    Article  PubMed  CAS  Google Scholar 

  • Stines, A.P., Grubb J., Gockowiak H., Henschke, P.A., Hoj, P.B., and R. van Heeswijck (2000) Proline and arginine accumulation in developing berries of V. vinifera in Australian vineyards: influence of vine cultivar, berry maturity and tissue type. Aust. J. Grape Wine Res. 6: 150–158.

    Article  CAS  Google Scholar 

  • Strizhov, N., Abraham, E., Okresz, L., Stickling, S., Zilberstein, A., Schell, J., Koncz, C., and L. Szabados (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA I, ABII and AXR2 in Arabidopsis. Plant J. 12: 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Syntichaki, K.M., Loulakakis, K.A., and K.A. Roubelakis-Angelakis (1996) The amino acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 168: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Szoke, A., Miao, G., Hong, Z., and D.P.S. Verma (1992) Subcellular location of P5CR in root/nodule and leaf of soybean. Plant Physiol. 99: 1642–1645.

    Article  PubMed  CAS  Google Scholar 

  • Tattersall, D.B., van Heeswijck, R., and P.B. Flej (1997) Identification and characterisation of a fruit-specific thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 114: 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Treeby, M.T., Holzapfel, B.P., Walker, R.R., and P.R. Nicholas (1998) Profiles of free amino acids in grapes of grafted Chardonnay grapevines. Aust. J. Grape Wine Res. 4: 121–126.

    Article  CAS  Google Scholar 

  • Ulrich, R. and O. Thaler (1955) On the presence and changes in several constituents of pears during the course of their development (xylose, quinic acid and proline). Compt. Rend. 240: 1625–1628.

    CAS  Google Scholar 

  • Venekamp, J.H. and J.T.M. Koot (1984) The distribution of free amino acids, especially of proline, in the organs of field bean plants, Vicia faba L., during development in the field. J. Plant Physiol. 116: 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen, N., Villaroel, R., and M. van Montagu (1993) Osmoregulation of a P5CR gene in Arabidopsis thaliana. Plant Physiol. 103: 771–781.

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen, N., Hua, X.-J., May, M. and M. van Montagu (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc. Natl Acad. Sci. U.S.A. 93: 8787–8791.

    Article  PubMed  CAS  Google Scholar 

  • Verma, D.P.S. and C. Zhang (1999) Chapter 8, Regulation of proline and arginine biosynthesis in plants. In: Plant Amino Acids, Biochemistry and Biotechnology, Singh B.K. (Ed.). Marcel Dekker, New York, USA, pp. 249–265.

    Google Scholar 

  • Walton, E.F., Clark, C.J., and H.L. Boldingh (1991) Effect of hydrogen cyanamide on amino acid profiles in kiwifruit buds during budbreak. Plant Physiol. 97: 1256–1259.

    Article  PubMed  CAS  Google Scholar 

  • Walton, E.F., Podivinsky, E., Wu, R.-M., Reynolds, P.H.S., and L.W. Young (1997) Regulation of proline biosynthesis in kiwifruit buds with and without hydrogen cyanamide treatment. Physiol. Plant. 102: 171178.

    Google Scholar 

  • Williamson, C.L. and R.D. Slocum (1992) Molecular cloning and evidence for osmoregulation of the A’pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). Plant Physiol. 100: 1464–1470.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y., and K. Shinozaki (1995) Correlation between the induction of a gene for A’ -pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7: 751–760.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba, Y., Nanjo, T., Miura, S., Yamaguchi-Shinozaki, K., and K. Shinozaki (1999) Stress-responsive and developmental regulation of levels of A’ -pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem. Biophys. Acta 261: 766–772.

    CAS  Google Scholar 

  • Zhang, H.-Q., Croes, A.F., and H.F. Linskens (1982) Protein synthesis in germinating pollen of Petunia: role of proline. Planta 154: 199–203.

    Article  CAS  Google Scholar 

  • Zhang, C.-S., Lu, Q., and D.P.S. Verma (1995) Removal of feedback inhibition of A’ -pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalysing the first two steps of proline biosynthesis in plants. J. Biol. Chem. 270: 20491–20496.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Heeswijck, R., Stines, A.P., Grubb, J., Møller, I.S., Høj, P.B. (2001). Molecular Biology and Biochemistry of Proline Accumulation in Developing Grape Berries. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics