Skip to main content

Grapevine Genetic Engineering

  • Chapter

Abstract

Genetic engineering is a powerful tool for plant improvement. Genes cloned from virtually any biological organism can be inserted singly or in combination into a plant. This allows for targeted improvement of elite cultivars, insertion of genes outside the usual gene pool of a species, and study of gene function. Numerous horticultural and agronomic crops have been genetically engineered worldwide. Already in some commercial markets are insect resistant maize and cotton, herbicide resistant soybeans and maize, and virus resistant papaya and summer squash, for example (Ahl Goy and Duesing, 1995; Dunwell, 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl Goy, P. and J.H. Duesing (1995) From pots to plots: genetically modified plants on trial. Bio/Technology 13: 454–458.

    Article  Google Scholar 

  • Barbier, P., Perrin, M., Cobanov, P., and B. Walter (2000) Probing pathogen-derived resistance against the fanleaf virus in grapevine. In: Proc. VII Intern. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 385–388.

    Google Scholar 

  • Baribault, T.J., Skene, K.G.M., Cain, P.A., and N.S. Scott (1990) Transgenic grapevines: regeneration of shoots expressing beta-glucuronidase. J. Exp. Bot. 41: 1045–1049.

    Article  CAS  Google Scholar 

  • Colby, S.M., Juncosa, A.M., and C.P. Meredith (1991) Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sci. 116: 356–361.

    Google Scholar 

  • Colby, S.M. and C.P. Meredith (1990) Kanamycin sensitivity of cultured tissues of Vitis. Plant Cell Repts 9: 237–240.

    CAS  Google Scholar 

  • Crossway, A., Hauptli, H., Houck, C.M., Irvine, J.M., Oakes, J.V., and L.A. Perani (1986) Micromanipulation techniques in plant biotechnology. Biotechniques 4: 320–334.

    Google Scholar 

  • Deblaere, R., Bytebier, B., Greve, H.D., Deboeck, F., Schell, J., Van Montagu, M., and J. Leemans (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13: 4777–4788.

    Article  PubMed  CAS  Google Scholar 

  • Dunwell, J.M. (1999) Transgenic crops: the next generation, or an example of 2020 vision. Ann. Bot. 84: 269277.

    Google Scholar 

  • Franks, T., He, D.G., and M.R. Thomas (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol. Breed. 4: 321–333.

    Article  CAS  Google Scholar 

  • Fromm, M., Taylor, L.P., and V. Walbot (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82: 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Fu, X., Duc, L.T., Fontana, S., Bong, B.B., Tinjuangjun, P., Sudhakar, D., Twyman, R.M., Christou, P., and A. Kohli (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy number transgenic plants with simple integration patterns. Transgenic Res. 9: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Gölles, R., Moser, R., Puhringer, H., Katinger, H., Laimer da Camara Machado, M., da Camara Machado, A., Minafra, A., Savino, V., Saldarelli, P., and G.P. Martelli (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus; grapevine virus A and grapevine virus B. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 305–311.

    Google Scholar 

  • Gray, D.J. and C.P. Meredith (1992) Grape. In: Biotechnology of Perennial Fruit Crops, Hammerschlag, F.A. and Litz, R.E. (Eds). CAB International, Wallingford, pp. 229–262.

    Google Scholar 

  • Harst, M., Bornhoff, B.-A., Zyprian, E., and R. Töpfer (2000a) Influence of culture technique and genotype on the efficiency of Agrobacterium-mediated transformation of somatic embryos (Vitis vinifera) and their conversion to transgenic plants. Vitis 39: 99–102.

    Google Scholar 

  • Harst, M., Bornhoff, B.-A., Zyprian, E., Töpfer, R., and G. Jach (2000b) Regeneration and transformation of different expiants of Vitis vinifera spp. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 289–295.

    Google Scholar 

  • Hébert, D., Kikkert, J.R., Smith, F.D., and B.I. Reisch (1993) Optimization of biolistic transformation of embryogenic grape cell suspensions. Plant Cell Rpts 12: 585–589.

    Google Scholar 

  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and R.A. Schilperoort (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  • food, E.E., Helmer, G.L., Fraley, R.T., and Chilton, M.D. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region ofpTiBo542 outside ofT-DNA. J. Bact. 168: 1291–1301.

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and R.T. Fraley (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Hoshino, Y., Zhu, Y.-M., Mii, M., Nakano, M., and E. Takahashi (2000) Transgenic grapevine plants (Vitis vinifera L.) produced by selecting secondary embryos after cocultivation of embryogenic callus with Agrobacterium tumefaciens. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 361–366.

    Google Scholar 

  • Huang, X.S. and M.G. Mullins (1989) Application of biotechnology to transferring alien genes to grapevine. Hereditas (Beijing) 11: 9–11.

    CAS  Google Scholar 

  • Iocco, P., Franks, T., and M.R. Thomas (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res. (in press).

    Google Scholar 

  • Joersbo M, Donaldson, I., Kreiberg, J., Petersen S.G., Brundstedt, J., and F.T. Okkels (1998) Analysis of man-nose selection used for transformation of sugar beet. Mol. Breed. 4: 11 I -117.

    Google Scholar 

  • Kikkert, J.R., Hébert-Soulé, D., Wallace, P.G., Striem, M.J., and B.I. Reisch (1996) Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15: 311–316.

    Article  CAS  Google Scholar 

  • Kikkert, J.R., Reustle, G.M., Ali, G.S, Wallace, P.G., and B.I. Reisch (2000) Expression of a fungal chitinase in Vitis vinifera L. ‘Merlot’ and ’Chardonnay’ plants produced by biolistic transformation. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 297–303.

    Google Scholar 

  • Kramer, M.G. and K. Redenbaugh (1994) Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVRTM tomato story. Euphytica 79: 293–297.

    Article  Google Scholar 

  • Krastanova, S., Perrin, M., Barbier, P., Demangeat, G., Cornuet, P., Bardonnet, N., Otten, L., Pinck, L., and B. Walter (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Repts 14: 550–554.

    CAS  Google Scholar 

  • Krastanova, S., Ling, K.S., Zhu, H.Y., Xue, B., Burr, T.J., and D. Gonsalves (2000) Development of transgenic grapevine rootstocks with genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 367–372.

    Google Scholar 

  • Kunkle, T., Niu, Q.W., Chan, Y.S., and N.H. Chua (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nature Biotechnology 17: 916–919.

    Article  Google Scholar 

  • Le Gall, O., Torregrosa, L., Danglot, Y., Candresse, T., and A. Bouquet (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expresssing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci. 103: 161–170.

    Google Scholar 

  • Legrand, V., Colrat, S., Dalmayrac, S., Fallot, J., and J.P. Roustan (2000) Expression of the VR-ERE gene in transformed grapevine plants increases resistance to eutypine, a toxin from Eutypa lata. In: 6th International Symp. on Grapevine Physiology and Biotechnology. 11–15 June 2000, Heraklion, Greece (Abstracts).

    Google Scholar 

  • Levenko, B.A. and M.A. Rubtsova (2000a) Herbicide resistant transgenic plants of grapevine. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 337–339.

    Google Scholar 

  • Levenko, B.A. and M.A. Rubtsova (2000b) A new in vivo method of grapevine genetic transformation. In: 6th International Symp. on Grapevine Physiology and Biotechnology. I1–15 June 2000, Heraklion, Greece (Abstracts).

    Google Scholar 

  • Lodhi, M.A., Ye, G.N, Weeden, N.F., and B.I. Reisch (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep. 12: 6–13.

    CAS  Google Scholar 

  • Martinelli, L. and G. Mandolino (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vins rupestris S.). Theor. Appl. Genet. 88: 621–628.

    Article  Google Scholar 

  • Martinelli, L., Costa, D., Poletti, V. Festi, S. Perl, A., Buzkan, N., Minafra, A., Saldarelli, P., and G.P. Martelli (2000) Genetic transformation of tobacco and grapevine for resistance to viruses related to the rugose wood disease complex. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 321–327.

    Google Scholar 

  • Mauro, M.C., Toutain, S., Walter, B., Pinck, L., Otten, L., Coutos-Thevenot, P., Deloire, A., and P. Barbier (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112: 97–106.

    Article  CAS  Google Scholar 

  • Mauro, M.C., -Thevenot, P., Boulay, M., Barbier, P., Walter, 13., Valat, L., and L. Pinck (2000) Analysis of 41B (Vins vinifera x Vitis berlandieri) grapevine rootstocks for grapevine fanleaf virus resistance. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 313–319.

    Google Scholar 

  • Mozsâr, J., Viczian, O., and S. Stile (1998) Agrobacterium-mediated genetic transformation of an interspecific grapevine. Vitis 37: 127–130.

    Google Scholar 

  • Mullins, M.G., Tang, F.C.A., and D. Facciotti (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Bio/Technology 8: 1041–1045.

    Google Scholar 

  • Nakano, M., Hoshino, Y., and M. Mii (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J. Exp. Bot. 45: 649–656.

    Article  CAS  Google Scholar 

  • Norelli, J.L. and H.S. Aldwinckle (1993) The role of aminoglycoside antibiotics in the regeneration and selec- tion of neomycin phosphotransferase-transgenic apple tissue. J. Amer. Soc. Hort. Sci. 118: 311–316.

    CAS  Google Scholar 

  • Perl, A. and Y. Eshdat (1998) DNA transfer and gene expression in transgenic grapes. In: Biotechnology, and Genetic Engineering Reviews, Tombs, M.P. (Eds). Intercept, Andover, pp. 365–386.

    Google Scholar 

  • Perl, A., Lotan, O., Abu-Abied, M., and D. Holland (1996) Establishment of an Agrobacterium-mediated transformation system for (Vitis vinifera L.) - the role of antioxidants during grape-Agrobacterium interactions. Nature Biotechnology 14: 624–628.

    Article  PubMed  CAS  Google Scholar 

  • Perl, A., Saad, S., Sahar, N., and D. Holland (1995) Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars - a synergistic effect of auxins and the role of abscisic acid. Plant Sci. 104: 193–200.

    Article  CAS  Google Scholar 

  • Perl, A., Thevenot, P.C., Sahar, N., Gollop, R., Rafi, E., and M. Boulay (1999) Proteases for the improvement of plant transformation. Plant biotechnology and in vitro biology in the 21st century. Proceedings of the IXth International Congress of the International Association of Plant Tissue Culture and Biotechnology, Jerusalem, Israel, 14–19 June 1998. Kluwer Academic Publishers, pp. 197–200.

    Google Scholar 

  • Perl, A., Sahar, N., Spiegel-Roy, P., Gavish, S., Elyasi, R., Orr, E., and H. Bazak (2000a) Conventional and biotechnological approaches in breeding seedless table grapes. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 607–612.

    Google Scholar 

  • Perl, A., Sahar, N., Farchi, S., Colova-Tsolova, V., Holland, D., and R. Gollop (2000b) Conventional and biotechnological breeding of seedless table grapes in Israel. In: 6th International Symp. on Grapevine Physiology and Biotechnology. 11–15 June 2000, Heraklion, Greece (Abstracts).

    Google Scholar 

  • Redenbaugh, K., Hiatt, W., Martineau, B., Lindemann, J., and D. Emlay (1994) Aminoglycoside 3’phosphotranferase II (APH (3’) II): Review of its safety and use in the production of genetically engineered plants. Food Biotech. 8: 137–165.

    Article  CAS  Google Scholar 

  • Reisch, B.1. and C. Pratt (1996) Grapes. In: Fruit Breeding: Vine and Small Fruits. Janick, J. and J.N. Moore (Eds). John Wiley, and Sons Inc, pp. 297–369.

    Google Scholar 

  • Reustle, G., Harst, M., and G. Alleweldt (1995) Plant regeneration of grapevine (Vins sp.) protoplasts isolated from embryogenic tissue. Plant Cell Repts 15: 238–241.

    CAS  Google Scholar 

  • Rojas, B., Paroschy, J.H., and B.D. McKersie (1997) Genetic transformation of grapevines for increased freezing tolerance. In Vitro Cell. Devel. Biol. 33 (part ID: 68A.

    Google Scholar 

  • Russell, J.A., Roy, M.K., and J.C. Sanford (1992) Major improvements in biolistic tranSformation of suspension-cultured tobacco cells, In Vitro Cell. Devel. Biol. 28P: 97–105.

    Google Scholar 

  • Sanford, J.C., Klein, T.M., Wolf, E.D., and N. Allen (1987) Delivery of substances into cells and tissues using a particle bombardment process. Partie. Sci. Techn. 5: 27–37.

    Article  CAS  Google Scholar 

  • Sanford, J.C., Smith, F.D., and J.A. Russell (1993) Optimizing the biolistic process for different biological applications. Methods in Enzymology 217: 483–509.

    Article  PubMed  CAS  Google Scholar 

  • Scorza, R., Cordts, J.M., Gray, D.J., Gonsalves, D., Emershad, R.L., and D.W. Ramming (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L.) plants. J. Amer. Soc. Hort. Sci. 121: 616–619.

    Google Scholar 

  • Scorza, R., Cordts, J.M., Ramming, D.W., and R.L. Emershad (1995) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Repts 14: 589–592.

    CAS  Google Scholar 

  • Shillito, R.D., Saul, M.W., Paszkowski, J., Müller, M., and I. Potrykus (1985) High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Article  Google Scholar 

  • Soloki, M., Alderson, P.G., and G. Tucker. (1998) Genetic transformation of grape using Agrobacterium, biolistics and silicon carbide whiskers. In: Tree Biotechnology: Towards the Millennium. Davey, M.R., Alderson, P.G., Lowe K.C. and Power J.B. (Eds.). Nottingham Univ. Press, pp. 325–330.

    Google Scholar 

  • Thomas, M.R., Iocco, P., and T. Franks (2000) Transgenic grapevines: Status and future. In. Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 279–287.

    Google Scholar 

  • Torregrosa, L. (1995) Biotechnologie de la vigne: les techniques de régénération in vitro (synthèse). Prog. Agr. Vitic. 112: 479–489.

    Google Scholar 

  • Torregrosa, L. (1998) A simple and efficient method to obtain stable embryogenic cultures from anthers of Vitis vinifera L. Vitis 37: 91–92.

    Google Scholar 

  • Torregrosa, L. and A. Bouquet (1993) In vitro culture: current contributions and prospects for grapevine multiplication and breeding (continuation and conclusion). Prog. Agr. Vitic. 110: 127–134.

    Google Scholar 

  • Tsvetkov, I.J. and A. Atanassov (2000) Gene transfer for stress resistance in grapes. In: Proc. VII Intl. Symp. on Grapevine Genetics and Breeding, Bouquet, A. and Boursiquot, J.-M. (Eds). Acta Hort. 528: 389–394

    Google Scholar 

  • Viss, W.J. and J.A. Driver (1996) Key grapevine pests and diseases in North American and resistance through genetic engineering, Brighton Crop Protection Conference - Pests, and Diseases 382: 125–130.

    Google Scholar 

  • Xue, B., Ling, K.S., Reid, C.L.. Krastanova, S., Sekiya, M., Momol, E.A., Sule, S., Mozsar, J., Gonsalves, D., and T.J. Burr (1999) Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell. Devel. Biol. Plant 35: 226–231.

    Google Scholar 

  • Yamamoto, T., Iketani, H., Ieki, H., Nishizawa, Y., Notsuka, K., Hibi, T., Hayashi, T., and N. Matsuta (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Repts 19: 639–646.

    Article  CAS  Google Scholar 

  • Zhu, Y., Hoshino, Y., Nakano, M., Takahashi, E., and M. Mii (1997) Highly efficient system of plant regeneration from protoplasts of grapevine (Vitis vinifera L.) through somatic embryogenesis by using embryo-genic callus culture and activated charcoal. Plant Sci. 123: 151–157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kikkert, J.R., Thomas, M.R., Reisch, B.I. (2001). Grapevine Genetic Engineering. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics