Skip to main content

Plant Organization Based on Source-Sink Relationships: New Findings on Developmental, Biochemical and Molecular Responses to Environment

  • Chapter
Molecular Biology & Biotechnology of the Grapevine

Abstract

The study of plant physiology as applied to the grapevine has been significantly advanced by the techniques of molecular biology and biotechnology. The study of the precise function of a gene, and the manipulation of that gene provide an efficient tool in the search for greater understanding of physiological and biochemical mechanisms. However, except when the function of a gene particularly limits the functioning of the plant, or when it is completely new and additive within the plant, such a study must be placed in the context of interactions with other genes and within the plant, as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andary, C., Mondolot-Cosson, L., and L.G. Dai (1996) In situ detection of polyphenols in plant microorganism interactions. In: Histology, Ultrastructure and Molecular Cytology of Plant-microorganism Interactions, Nicole M. and Gianinazzi-Pearson V. (Eds). Kluwer Academic Publishers, pp. 43–53.

    Google Scholar 

  • Boss, P.K., Davies C., and S. Robinson (1996) Analysis of the expression of anthocyanin pathways genes in developing V vinifera L. cv Syrah grape berries and the implications for pathway regulation. Plant Physiol. 111: 1059–1066.

    PubMed  CAS  Google Scholar 

  • Busam, G., Kassenmeyer H.H., and U. Matern (1997) Differential expression of chitinases in V. vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol. 115: 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  • Candolfi-Vasconcelos, M.C., Candolfi M.P., and W. Kohlet (1994) Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in V. vinifera L. Planta 192: 567–573.

    Article  CAS  Google Scholar 

  • Carbonneau, A. (1996) General relationships within the whole plant: examples of the influence of vigour status, crop load and canopy exposure on the sink “berry maturation ” for the grapevine. Acta Hortic. 427: 99–118.

    Google Scholar 

  • Carbonneau, A. and C. Loth (1985) Influence du régime d’éclairement journalier sur la résistance stomatique et la photosynthèse brute chez V. vinifera L. cv “Cabernet-Sauvignon”. Agronomie 5: 631–638.

    Article  Google Scholar 

  • Chaumont, M., Morot-Gaudry, J.F., and C.H. Foyer (1995) Effects of photoinhibitory treatment on CO2 assimilation, the quantum yield of CO2 assimilation, Dl protein, ascorbate, glutathione and xanthophyll contents and the electron transport rate in vine leaves. Plant Cell Environm. 18: 1358–1366.

    Article  CAS  Google Scholar 

  • Coombe, B.G. (1992) Research on development and ripening of the grape berry. Am. J. Enol. Vitic. 43: 101–110.

    Google Scholar 

  • Coombe, B.G. and C.R. Hale (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol. 51: 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Davies, C., Boss, P.K., and S.P. Robinson (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 115: 1155–1161.

    PubMed  CAS  Google Scholar 

  • Davies, C. and S.P. Robinson (1996) Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol. 111: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Discon, A.R. and N.L. Paiva (1995) Stress-induced phenylpropenoid metabolism. The Plant Cell 7: 1085–1097.

    Google Scholar 

  • Dry, P.R. and B.R. Loveys (1998) Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Australian Journal of Grape and Wine Research 4: 140–148.

    Article  Google Scholar 

  • During, FI. and M. Stoll (1996) Stomatal patchiness of grapevine leaves. I. Estimation of non-uniform stomatal apertures by a new infiltration technique. Vitis 35: 65–68.

    Google Scholar 

  • During, H., Alleweldt, G., and R. Koch (1978) Studies on hormonal control of ripening in berries of grapevines. Acta Hort. 80: 397–405.

    Google Scholar 

  • Fillon, L., Ageorges, A., Picaud, S., Coutos-Thevenot, P., Lemoine, R., Romieu, C., and S. Delrot (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol. 120: 1083–1093.

    Article  Google Scholar 

  • Giannakis, C., Bucheli, C.S., Skene, K.G.M., Robinson, S.P., and. N.S. Scott (1998) Chitinase and 13–1,3glucanase in grapevine leaves: a possible defence against powdery midew infection. Aust. J. Grape Wine Res. 4: 14–22.

    Article  CAS  Google Scholar 

  • Greenspan, M.D., Schultz, H.R., and M..A. Matthews (1996) Field evaluation of water transport in grape berries during water deficits. Physiol. Plant. 97: 55–62.

    Article  CAS  Google Scholar 

  • Harris, J.M., Kriedemann, P.E., and J.V. Possingham (1968) Anatomical aspects of grape berry development. Vitis 7: 106–119.

    Google Scholar 

  • Haselgrove, L., Botting, D., Van Heeswijck, R., Hoj, P.B., Dry, P.R., Ford, C. and P.G. lland (2000) Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv Syrah grape berries. Aust. J. Grape Wine Res. 6: 141–149.

    Article  CAS  Google Scholar 

  • Katerji, N., Daudet, F.A., Carbonneau, A., and N. Ollat (1994) Etude à l’échelle de la plante entière du fonctionnement hydrique et photosynthétique de la vigne: comparaison des systèmes de conduite traditionnel et en Lyre. Vitis 33: 197–203.

    Google Scholar 

  • Kraeva, E. (1999) Mécanismes de défense et de développement de la vigne et de ses baies (Vins vinifera L.): évolution des 13–1,3–glucanases et des composés phénoliques constitutifs et induits. Thèse de l’Université de Reims. pp. 132.

    Google Scholar 

  • Kraeva, E., Tesnière, C., Terrier, N., Romieu, C., Sauvage, F.X., Bierne, J., and A. Deloire (1998) Transcription of a 13–1,3–glucanase gene in grape berries in a late developmental period, or earlier after wounding treatments. Vitis 37: 107–111.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1996) Characterization of V. vinifera L. gluthamine syn- thetase and molecular cloning of cDNAs for the cytosolic enzyme. Plant Molec. Biol. 31: 983–992.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1997) Molecular cloning and characterization of cDNAs encoding for ferredoxin-dependent glutamate synthase from Vitis vinifera. Physiol. Plant. 101: 220–228.

    Article  CAS  Google Scholar 

  • Mccarthy, M.G. (1997) The effect of transient water deficit on berry development of cv Syrah (V. vinifera L.). Aust. J. Grape Wine Res. 3: 102–108.

    Google Scholar 

  • Naor, A., Bravdo, B., and Y. Hepner (1993) Effect of post-véraison irrigation level on Sauvignon blanc yield, juice quality and water relations. S. Afr. J. Enol. Vitic. 14: 19–25.

    Google Scholar 

  • Ojeda, H. (1999) Influence de la contrainte hydrique sur la croissance du péricarpe et sur l’évolution des phénols des baies de raisin (V. vinifera L.) cv Syrah. Thèse de l’Ecole Nationale Supérieure Agronomique de Montpellier, pp. 161.

    Google Scholar 

  • Ojeda, H., Deloire, A., Carbonneau, A., Ageorges, A., and C. Romieu (1999) Berry development of grapevines: relations between the growth of berries and their DNA content indicate cell multiplication and enlargement. Vitis 38: 145–150.

    Google Scholar 

  • Price, S.F., Breen, P.J., Valalladao, M. and B.T. Watson (1995) Cluster sun exposure and quercetin in grapes and wine. Am. J. Enol. and Vitic. 46: 187–194.

    CAS  Google Scholar 

  • Primikirios, N.I. and K.A. Roubelakis-Angelakis (1999) Characterization and expression of arginine decarboxylase in Vitis vinifera L. Planta 208: 574–582.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I. (1992) Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439–463.

    Article  CAS  Google Scholar 

  • Renault, A.S., Letinois, I., Kracva, E., Bieme, J., and A. Deloire (1997) Grapevine infection with Botrytis cinerea results in synthesis of pathogenesis-related proteins ANPP-5° Conférences Inernationale sur les Maladies des Plantes, Tours, pp. 103–110.

    Google Scholar 

  • Renault, A.S., Deloire, A., Letinois, 1., Kraeva, E., Tesnière, C., Ageorges, A., Redon, C., and J. Bierne (2000) ß-1,3–glucanase gene expression in grapevine leaves as a response to infection with Botrytis cinerea. Am. J. Enol. Vitic. 51: 81–87.

    CAS  Google Scholar 

  • Robinson, S.P., Jacobs, A.K., and I.B. Dry (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and M.D. Hunt (1996) Systemic acquired resistance. Plant Cell 8: 1809–1819.

    PubMed  CAS  Google Scholar 

  • Sami-Manchado, P., Verriès, C., and C. Tesnière (1997) Molecular characterization and structural analysis of one alcohol deshydrogenase gene (GV-Adh 1) expressed during ripening of grapevine (V. vinifera L.) berry. Plant Science 125: 177–187.

    Article  Google Scholar 

  • Schultz, H.R. and A..A. Matthews (1993) Growth, osmotic adjustement, and cell-wall mechanics of expanding grape leaves during water deficits. Crop Science 33: 287–294.

    Article  Google Scholar 

  • Smart, R.E. (1974) aspects of water relations of the grapevine (V. vinifera). Am. J. Enol. Viticult. 25: 84–91.

    Google Scholar 

  • Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., and C. Tonelli (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (V vinifera L.). Plant Mol. Biol. 24: 743–755.

    CAS  Google Scholar 

  • Syntichaki, K.M., Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1996) The amino acid sequence similarity of plant glutamate dehydrogenase with the extremophilic arcaeal enzyme conforms to its stress related function. Gene 168: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Tattersall, D.B., van Heeswijck, R., and P.B. Raj (1997) Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 114: 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Tesniere, C., Komieu, C., and M.E Vayda (1993) Changes in the gene expression of grapes in response to hypoxia. Am. J. Enol. Vitic. 44: 445–451.

    CAS  Google Scholar 

  • Van Loon, L.C. (1997) Induced resistance in plants and the role of pathogenesis related proteins. European Journal of Plant Pathology 103: 753–765.

    Article  Google Scholar 

  • Van Zyl, J.L. (1984) Response of Colombar grapevines to irrigation as regards quality aspects and growth. S. Afr. J. Enol. Vitic. 5: 19–28.

    Google Scholar 

  • Wiese, W., Vornam, B., Krause, E., and Jr Kindl (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine fragment. Plant Molec. Biol. 26: 667–677.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carbonneau, A., Deloire, A. (2001). Plant Organization Based on Source-Sink Relationships: New Findings on Developmental, Biochemical and Molecular Responses to Environment. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics