Skip to main content

Abstract

The main functions of water in plants are to fill the symplast (Cosgrove, 1993), to carry solutes and to balance solar energy by evaporation. All these functions involve water movement between compartments for short or long distances. Typically these movements obey Ohm’s law and are controlled by a gradient of water potential crossing a structure formally analogous to a resistance (or the reciprocal, conductance, Van de Honert, 1948). Basic water relations in grapevines have been previously reviewed by Smart and Coombe (1983). Quantitative measurements for the short distance path in grapevine are rare. Clear information is lacking on the tissue structure and membrane conductivity to document the local root absorption step from the cortex to the stele, and water relations in growing tissues such as root tip, shoot apex and berries require further study. Yet, it is clear that aquaporins, which are proteins mediating transmembrane water transport, probably play an important part in the water status of the different cells and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrami, L., Simon, M., Rousselet, G., Berthonaud, V., Buhler, J. M., and P. Ripoche (1994) Sequence and functional expression of an amphibian water channel, FA-CHIP: a new member of the MIP family. Biochem. Biophys. Acta. 1192: 147–151.

    Google Scholar 

  • Ageorges, A., lssaly, N., Picaud, S., Delrot, S., and C. Romieu (2000) Identification and functional expression in yeast of grape berry sucrose carrier. Plant Physiol. Biochem. 38: 177–185.

    Google Scholar 

  • Archer, E. and FI. C. Strauss (1985) Effect of plant density on root distribution of three year old grafted 99 Richter grapevine. S. Afr. J. Enol. Vitic. 6: 25–30.

    Google Scholar 

  • Baiges, I., Schaffner, A. R., and A. Mas (2000) Five PIP-and two TIP-like genes are expressed in Vitis hybrid Richter-100. Abst. 6th International Symposium on Grapevine Physiology and Biotechnology, Heraklion, Greece, p. 74.

    Google Scholar 

  • Balk, P. A. D. A. and de Boer (1999) Rapid stalk elongation in Tulip (Tulipa gesneriana L. cv Apeldoorn) and the combined action of cold-induced invertase and water-channel protein g-TIP. Planta. 209: 346–354.

    Article  PubMed  CAS  Google Scholar 

  • Barone, L. M., Mu, H. H., Shih, C. J., Kashlan, K. B., and B. P. Wasserman (1998) Distinct biochemical and topological properties of the 31– and 27– kilodalton plasma membrane intrinsic protein subgroups from red beet. Plant Physiol. 118: 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Barrieu, F., Marty-Mazars, D., Thomas, D., Chaumont, F., Charbonnier, M., and F. Marty (1999) Dessication and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26–1 in cauliflower cells. Planta 209: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Biela, A, Grote, K., Otto, B., Hoth, S., Hedrich, R., and R. Kaldenhoff (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQPI is mercury insensitive and permeable for glycerol. Plant J. 18: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Champagnol, F. (1984) Eléments de Physiologie dc la Vigne et de la Viticulture Générale. Prades le Lez: Champagnol, ( Ed.).

    Google Scholar 

  • Chaumont, F., Barrieu, F., Herman, E.M., and M.J. Chrispeels (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol. 117: 1143–1152.

    Article  PubMed  CAS  Google Scholar 

  • Chaumont, F., Barrieu, B., Jung, R., and M. J. Chrispeels (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups in differential aquaporin activity. Plant Physiol. 122: 10251034.

    Google Scholar 

  • Clarkson, D. T., Carvajal, M., Hanzler, T., Waterhouse, R. N., Smyth, A. J., Cooke, D. T., and E. Steudle (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J. Exp. Bot. 51: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Cochard, H., Peiffer, M., Legal], K., and A. Granier (1997) Developmental control of xylem hydraulic resistance and vulnerability to embolism in Fraxinus excelsior L.: impact on water relations. J. Exp. Bot. 48: 655–663.

    Article  CAS  Google Scholar 

  • Coombe, B. G. (1989) The berry as a sink. Vigne Acta Hort. 239: 149–157.

    Google Scholar 

  • Coombe, B. G. and G. R. Bishop (1980) Development of grape berry. Il. Changes in diameter and deform-ability during véraison. Aust. J. Agric. Res. 31: 499–509.

    Google Scholar 

  • Correia, M. J., Pereira, J. S., Chaves, M. M., Rodrigues, M. L., and C. A. Pacheco (1995) ABA xylem concentrations determine maximum daily leaf conductance of field grown Vitis vinifera L. plants. Plant Cell Environ. 18: 511–521.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 124: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Creasy, G. L., Price, S. V., and L. P.B. (1993) Evidence for xylem discontinuity in Pinot noir and Merlot Grapes: dye uptake and mineral composition during berry maturation. Am. J. Enol. Vitic. 44: 187–192.

    CAS  Google Scholar 

  • Daniels, M. J., Mirkov, T. E., and M. J. Chrispeels (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 106: 1325–1333.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, M. J., Chaumont, F., Mirkov, T. E., and M. J. Chrispeels (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8: 587–599.

    PubMed  CAS  Google Scholar 

  • Davies, F. T., Porter, J. R., and R. G. Lindeman (1993) Drought resistance of mycorhizal pepper plantsindependant of leaf phosphorus concentration, response in gas exchange and water relation. Plant Physiol. 87: 45–53.

    Article  CAS  Google Scholar 

  • Dewar, R. and M. G. R. Cannell (1992) Carbon sequestration in tree, products and soils of forest plantations: an analysis using UK examples. Tree Physiology 11: 49–71.

    Article  PubMed  CAS  Google Scholar 

  • Downton, W. J. S., Loveys, B. R., and W. J. R. Grant (1988) Stomatal closure fully accounts for the inhibition of photosynthesis by abscissic acid. New Phytol. 108: 263–266.

    Article  CAS  Google Scholar 

  • Dry, P. R. and B. R. Loveys, (1998) Factor influencing grapevine vigour and the potential for control with partial rootzone drying. Aust. J. Grape Wine Res. 4: 140–148.

    Article  Google Scholar 

  • During, H. (1987) Stomatal response to alteration of soil and air humidity in grapevines. Vitis 26: 9–18.

    Google Scholar 

  • During, H., Lang, A., and F. Oggioni (1987) Patterns of water flow in Riesling berries in relation to developmental changes in their xylem morphology. Vitis 26: 123–131.

    Google Scholar 

  • Eckert, M., Biela, A., Siefritz, F., and R. Kaldenhoff (1999) New aspects of plant aquaporin regulation and specificity. J. Exp. Bot. 50: 1541–1545.

    CAS  Google Scholar 

  • Escalonas, J.M., Flexas, J., and H. Medrano (1999) Contribution of different levels of plant canopy to total carbon assimilation and intrisic water use efficiency of Mento Negro and Tempranillo grapevines. Abst. First ISHS Workshop on water relations of grapevines, E. H. Ruhl and J. Schmid, (Eds). ISHS, Stutgart, Germany, pp. 141–145.

    Google Scholar 

  • Esau, K. (1948) Phloem structure in the grapevine, and its seasonal changes. Hilgardia 18: 217–296.

    Google Scholar 

  • Esau, K. (1965) Plant Anatomy. N. Y. Wiley.

    Google Scholar 

  • Fillion, L., Ageorges, A., Picaud, S., Coutos-Thévenot, P., Lemoine, R., Romieu, C., and S. Delrot (1999) Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Plant Physiol. 120: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, N., Oliver, K.J., Nu, N., and B. Coombe (1987) Solute accumulation by grape pericarp cells. IV. Perfusion of pericarp apoplast via the pedicel and evidence for xylem malfunction in ripening berries. J. Exp. Bot. 38: 668–679.

    Article  Google Scholar 

  • Fleurat-Lessard, P., Frangne, N., Maeshima, M., Ratajczak, R., Bonnemain, J. L., and E. Martinoia (1997) Increased expression of vacuolar aquaporin and H -ATPase related to motor cell function in Mimosa pudica L. Plant Physiol. 114: 827–834.

    PubMed  CAS  Google Scholar 

  • Fray, R. G., Wallace, A., Grierson, D., and G. W. Lycett (1994) Nucleotide sequence and expression of ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol. Biol. 24: 539–543.

    CAS  Google Scholar 

  • Gardner, W. R. (1960) Dynamic aspects of water availability to plants. Soil Sciences 89: 63–73.

    Article  Google Scholar 

  • Gerbeau, P., Glüclü, J., Ripoche, P., and C. Maurel (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18: 577–587.

    Article  PubMed  CAS  Google Scholar 

  • Glad, C., Regnard, J. L., Querou, Y., Brun, O., and J. F. Morot-Gaudry (1992) Flux and chemical composition of xylem exudates from Chardonnay grapevines: temporal evolution and effect of recut. Amer. J. Enol. Vitic. 43: 275–282.

    CAS  Google Scholar 

  • Gomez de Campo, M., Ruiz, C., Sotes, V., and J. R. Lassarague (1999) Water consumption in grapevines: influence of leaf area and irrigation. First ISHS Workshop on Water Relations of Grapevines, E. H. Ruhl and J. Schmid (Eds). ISHS, Sttutgart, Germany, pp. 279–286.

    Google Scholar 

  • Greenspan, M. D., Shakel, K. A., and M. A. Matthews (1994) Developmental control of diurnal water budget of grape berry exposed to water deficits. Plant Cell Environ. 17: 811–820.

    Article  Google Scholar 

  • Hollenbach, B. and K. J. Dietz (1995) Molecular cloning of emip, a member of the major intrinsic protein (MIP) gene family, preferentially expressed in epidermal cells of barley leaves. Bot. Acta. 108: 425–431.

    CAS  Google Scholar 

  • Iacono, F., Buccella, A., and E. Peterlunger (1998) Water stress and rootstock influence of leaf gas exchange of grafted and ungrafted grapevines. Sciencia Hort. 75: 27–39.

    Article  Google Scholar 

  • Johansson, I., Larsson, C., Ek, B., and P. Kjellbom (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Cat’ and apoplastic water potential. Plant Cell 8: 1181–1191.

    PubMed  CAS  Google Scholar 

  • Johansson, 1., Karlsson, M., Shukla, V. K., Chrispeels, M. J., Larsson, C., and P. Kjellbom (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10: 451–459.

    Google Scholar 

  • Johansson, I., Karlsson, M., Johanson, U., Larsson, C., and P. Kjellbom (2000) The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465: 324–342.

    Google Scholar 

  • Johnson, K. D. and M. J. Chrispeels (1992) Tonoplast-bound protein kinase phosphorylates tonoplast intrisic protein. Plant Physiol. 100: 1787–1795.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. D., Höfte, H., and M. J. Chrispeels (1989) An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 91: 1006–10013.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H. G. (1998) Stomata] control of photosynthesis and transpiration. J. Exp. Bot. 49: 387–398.

    Google Scholar 

  • Kaldenhoff, R., Grote, K., Zhu, J. J., and U. Zimmermann (1998) Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J. 14: 121–128.

    Google Scholar 

  • Kammerloher, W., Fischer, U., Piechottka, G. P., and A. R. Schaffner (1994) Water channels in plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J. 6: 187–199.

    Article  PubMed  CAS  Google Scholar 

  • Klarkson, D. T., Robart, A. W., Stephen, J. E., and M. Stark (1987) Suberin lamellae in hypodermis of maize (Zea mays) roots: development and factors affecting the permeability of hypodermal layers. Plant Cell Environ. 10: 83–93.

    Article  Google Scholar 

  • Lang, A. and M. R. Thorpe (1989) Xylem, phloem and transpiration flows in grape: application of a techniquemeasuring the volume of attached fruits using Archimedes principle. J. Exp. Bot. 40: 1069–1078.

    Article  Google Scholar 

  • Liu, W. T., Wenkert, W., Allen, L. H., and E. R. Lemon (1978) Soil-plant-water relations in a New-York vineyard: resistance to water movement. J. Am. Soc. Horde. Sci. 103: 223–230.

    Google Scholar 

  • Loveys, B. R. (1984) Diurnal changes in water relations and abscissic acid in field-grown Vats vinifera cultivars. Ill. The influence of xylem-derivated ABA on leaf gas exchange. New Phytol. 98: 563–573.

    Article  CAS  Google Scholar 

  • Ludevid, D., Höfte, H., Himelblau, E., and M. J. Chrispeels (1992) The expression pattern of the tonoplast intrinsic protein g-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol. 100: 1633–1639.

    Article  PubMed  CAS  Google Scholar 

  • Mabrouk, H., Carbonneau, A., and H. Sinoquet (1997 a) Canopy structure and radiation regime in grapevine. I. Spatial and angular distribution of leaf area in two canopy system. Vitis 36: 119–123.

    Google Scholar 

  • Mabrouk, H., Carbonneau, A., and H. Sinoquet (1997 b) Canopy structure and radiation regime in grapevine. II. Modelling radiation interception and distribution inside the canopy. Vitis 36: 125–132.

    Google Scholar 

  • Macey, R. I. and R. E. Farmer (1970) Inhibition of water and solute permeability in human red cells. Biochim. Biophys. Acta. 211: 104–106.

    Article  PubMed  CAS  Google Scholar 

  • Magnuson, C. E., Goeschel, J. D., Sharpe, P. J. H., and D. W. Demichele (1979) Consequences of insufficient equations in models of the Munch hypothesis of phloem transport. Plant Cell Environ. 2: 181–188.

    Article  Google Scholar 

  • Maurel, C. (1997) Aquaporins and water permeability of plant membranes. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 48: 399–429.

    Article  PubMed  CAS  Google Scholar 

  • Maurel, C., Reizer, J., Schroeder, J. 1., and M. J. Chrispeels (1993) The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 12: 2241–2247.

    CAS  Google Scholar 

  • Maurel, C., Tacnet, F., Güçlü, J., Guern, J., and P. Ripoche (1997) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc. Natl. Acad. Sei. USA. 94: 7103–7108.

    Article  CAS  Google Scholar 

  • Meidner, H. (1983) Our understanding of plant water relations. J. Exp. Bot. 34: 1606–1618.

    Article  Google Scholar 

  • Moreshet, S. and M. G. Huck (1991) Dynamic of water permeability. in Plant root. The Hidden Half, Y.

    Google Scholar 

  • Waisel, A. Eshel, and V. Kafkafi (Eds). Marcel Dekker Inc., New York, Basel, Hong Kong, pp. 605–626.

    Google Scholar 

  • Moreshet, S., Cohen, Y., Green, G. S., and M. Fuchs (1990) The partitioning of hydraulic conductances within mature orange trees. J. Exp. Bot. 41: 833–839.

    Google Scholar 

  • Munch, E. (1930) Die Stuffbewegungen in der Pflanze. Lena: Fisher.

    Google Scholar 

  • Nappi, P., Jodice, R., Luzzati, A., and L. Conino (1985) Grapevine root system and VA mycorrhizae in soils of Piemont (Italy). Plant and Soil 85: 205–210.

    Article  Google Scholar 

  • Niemietz, C.M. and S.D. Tyerman (1997) Characterization of water channels in wheat root membrane vesicles. Plant Physiol. 115: 561–567.

    PubMed  CAS  Google Scholar 

  • Nikolaou, N., Karagiannidis, N., and K. Aggelopoulos (2000) Effects of arbuscular micorrhizae on water relations and photosynthesis of Cabernet Sauvignon grapevine grafted on some rootstoks under water stress, Abst. 6f International Symposium on Grapevine Physiology and Biothechnology, Heraklion, Greece, p. 73.

    Google Scholar 

  • Nobel, P. S. (1983) Biophysical Plant Physiology and Ecology, Freeman, San Fransisco, USA.

    Google Scholar 

  • Ollat, N. and J. P. Gaudillère (1995) Bilan hydrique et carboné de baies de Cabernet Sauvignon (Vitis vinifera L.) au cours de leur developpement. Abst. 5e Symposium International d’Oenologie, Bordeaux, France, pp. 13–16.

    Google Scholar 

  • Ollat, N. and J. P. Gaudillère (1998) The effect of limiting leaf area during stage I of berry growth on development and composition of berries of Vitis vinifera L. cv Cabernet Sauvignon. Am. J. Enol. Vitic. 49: 251–257.

    CAS  Google Scholar 

  • Paris, N., Stanley, C. M., Jones, R. L., and J. C. Rogers (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572.

    Article  PubMed  CAS  Google Scholar 

  • Passioura, J. B. and R. Munns (1984) Hydraulic resistance of plants. 2. Effects of rooting medium and time of day in barley and lupin. Aust. J. Plant Physiol. 11: 341–350.

    Article  Google Scholar 

  • Phillips, A. L. and A. K. Huttly (1994) Cloning two gibberellin-regulated eDNA from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, gamma-TIP, is increases by GA3. Plant Mol. Biol. 24: 603–615.

    CAS  Google Scholar 

  • Pomper, K.W. and P.J. Breen (1995) Levels of apoplastic solutes in developing strawberry fruit. J.Exp. Bot. 46: 743–752.

    Article  CAS  Google Scholar 

  • Porten, M. and F. Manty (1999) Sap flow measurments on different scion varieties. Abst. First ISHS Workshop on Water Relation of grapevine, E.H. Ruhl and J. Schmid, (Eds). ISHS, Stuttgart, Germany, pp. 187–196.

    Google Scholar 

  • Preston, G. M., Carroll, T. P., Guggino, W. B., and P. Agre (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256: 385–387.

    Article  PubMed  CAS  Google Scholar 

  • Richards, D. (1983) The grape root system. Hortic. Rev. 5: 127–167.

    Google Scholar 

  • Richards, D. and J. A. Considine (1981) Suberization and browning of grapevine roots. In: Structure and Function of Plant Roots, B. e. a. (Eds). London: Junk D.W., pp. 111–115.

    Chapter  Google Scholar 

  • Riou, C., Valancogne, C., and P. Picri (1989) A simple model for interception of solar radiations by a vineyard - Comparison with field data. Agronomie 9: 441–450.

    Article  Google Scholar 

  • Riou, C., Pieri, P., and B. LeClech (1994) Consommation d’eau de la vigne en conditions hydriques non limitantes. Formulation simplifiée de la transpiration. Vitis 33: 109–115.

    Google Scholar 

  • Ritchie, J. T. (1972) Model for predicting evaporation from row-crop with incomplet cover. Wat. Rcsour. Res. 8: 1204–1212.

    Article  Google Scholar 

  • Rivers, R. L., Dean, R. M., Chandy, G., Hall, J. E., Roberts, D. M., and M. L. Zeidel (1997) Functional analysis of Nodulin 26, an aquaporin in soybean roots nodule symbosiomes. J. Biol. Chem. 272: 16256–16261.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. G., Sieber, 1I., Kammerloher, W., and A. R. Schaffner (1996) PIPI aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophyll. Plant Physiol. 111: 645–649.

    CAS  Google Scholar 

  • Sanderson, G. and D. Fitzerald (1994) Regulated deficit irrigation-principles and potential problems. Aust. Grapegrower and Winemaker 414: 10–12.

    Google Scholar 

  • Schaffner, A. R. (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Scholander, P. F., Lowe, W. E., and J. W. Kanwisher (1955) The rise of sap in tall grapevines. Plant Physiol. 30: 94–104.

    Google Scholar 

  • Schultz, H. R. and M. A. Matthews (1988) Resistance to water transport in shoots of Vitis vinifera L. Plant Physiol. 88: 718–724.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, H. R., Lebon, E., and C. Rousseau (1998) Suitability of the “Ball, Woodrow, Berry Model ” for the description of stomatal coupling to photosynthesis of different Vitis species and Vitis vinifera cultivars in different climatic regions at various levels of water deficit. First ISHS Workshop on Water relations of Grapevines, E.H. Ruhl and J. Schmid (Eds). ISHS, Sttutgart, Germany, pp. 17–30.

    Google Scholar 

  • Seguin, G. (1975) Alimentation en eau de la vigne et composition chimique des moûts dans les grands crus du Médoc. Phénomènes de régulation. Conn. Vigne Vin. 9: 23–34.

    Google Scholar 

  • Serraj, R., Frangne, N., Maeshima, M., Fleurai-Lessard, P., and J. J. Devron (1998) A g-TIP cross-reacting proteins is abundant in the cortex of soybean N -fixing nodules. Planta 206: 681–684.

    CAS  Google Scholar 

  • Sheehy, J. E., Mitchell, P. L., Durand, J. L., Gastal, F2., and F. I. Woodwrad (1995) Calculation of translocation coefficients for phloem anatomy for use in crop models. Annu. Bot. 76: 263–269.

    Google Scholar 

  • Smart, R. E. and B. G. Coombe (1983) Water relations in grapevine. Water deficits and plants growth, A. P. Inc., ( Ed. ). New-York, pp. 137–196.

    Google Scholar 

  • Smart, R. E., Dick, J. K., Gravett, I. M., and B. M. Fisher (1990) Canopy management to improve grape yield and wine quality- Principles and Practices. S. Afr. J. Enol. Vitic. 11: 1–17.

    Google Scholar 

  • Smith, B. L. and P. Agre (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266: 6407–6415.

    PubMed  CAS  Google Scholar 

  • Southey, J. M. and E. Archer (1988) The effect of rootstock cultivar on grapevine root distribution and density. The grapevine root and its environment, J. L. Van Zyl, (Ed.). Stellenboch: Department of Agriculture and Water Supply, Republic of South Africa, pp. 53–73.

    Google Scholar 

  • Sperry, J. S., Holbrook, N. M., Zimmerman, M. H., and M. T. Tyree (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol. 83: 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Steudle, E. and C. A. Peterson (1998) How does water get through roots. J. Exp. Bot. 49: 775–788.

    CAS  Google Scholar 

  • Swanepoel, J. J. and C. E. do Villiers (1988) Anatomy of Fills roots and certain abnormalities. In: The Grapevine Root and its Environment, J.L. Van Zyl, (Ed.). Stellenboch: Department of Agriculture and Water Supply, Republic of South Africa, pp. 138–146.

    Google Scholar 

  • Sylvestre, J., Ferreira, M. I., and C. Valancogne (1999) Evapotranspiration and water relations from a vineyard in central Portugal during spring-summer period. Abst. First ISI IS Workshop on Water Relations of grapevine, E.FI. Ruhl and J. Schmid, (Eds). ISHS, Stuttgart, Germany, pp. 213–218.

    Google Scholar 

  • Tardaguila, J., Bertamini, M., Reniero, F., and G. Versini (1997) Oxygen isotope composition of must water in grapevine: effect of water deficit and rootstock. Aust. J. Grape Wine Res. 3: 84–89.

    Article  CAS  Google Scholar 

  • Tardieu, F. and T. Simonneau (1998) Variability among species of stomatal control under fluctuating soil water status and evaporating demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot. 49: 419432.

    Google Scholar 

  • Tyerman, S. D., Bohnert, H. J., Maurel, C., Steudle, E., and J. A. C. Smith (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50: 1055–1071.

    CAS  Google Scholar 

  • Tyree, M. T. and J. S. Sperry (1988) Do woody plant operate near the point of catastrophic xylem dysfunction caused by dynamic water stress ? Plant Physiol. 88: 574–580.

    Article  PubMed  CAS  Google Scholar 

  • Tyree, M. T., Davies, S. D., and H. Cochard (1994) Biophysical perspectives of xylem evolution: is there a trade-off of hydraulic efficiency for vulnerability of dysfunction. IAWA J. 15: 335–360.

    Google Scholar 

  • Van de Honert, T. H. (1948) Water transport in plant as a catenary process. Discussion of the Faraday Society. 3: 146–153.

    Article  Google Scholar 

  • Van Zyl, J. L. (1988) Response of the grapevine root to soil water regimes and irrigation systems. In: The Grapevine Root and its Environment, J. L. Van Zyl, (Ed.). Stellenboch, Department of Agriculture and Water Supply, Republic of South Africa, pp. 30–43.

    Google Scholar 

  • Weig, A., Deswarte, C., and M. J. Chrispeels (1997) The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 114: 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L. (1999) Water use of Thomson seedless grapevines measured with a weighing lysimeter during a late season dry down period. Abst. First ISHS Workshop on Water relation of grapevines, E.H. Ruhl and J. Schmid (Eds). Stuttgart, Germany, pp. 161–167.

    Google Scholar 

  • Winkel, T. and S. Rambal (1993) Influence of water stress on grapevines growing in fields: from leaf to whole-plant response. Aust. J. Plant Physiol. 20: 143–157.

    Article  Google Scholar 

  • Yamada, S., Katsuhara, M., Kelly, W. B., Michalowski, C. B., and J. Bohnert (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7: 1129–1142.

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S., and K. Shinozaki (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to dessication in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes putative transmembrane channel protein. Plant Cell Physiol. 33: 217–224.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Delrot, S., Picaud, S., Gaudillère, J.P. (2001). Water Transport and Aquaporins in Grapevine. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics