Skip to main content

A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations

  • Conference paper
Migrations and Dispersal of Marine Organisms

Part of the book series: Developments in Hydrobiology ((DIHY,volume 174))

Abstract

Diel vertical migration (DVM) by zooplankton is a universal feature in all the World’s oceans, as well as being common in freshwater environments. The normal pattern involves movement from shallow depths at night to greater depths during the day. For many herbivorous and omnivorous mesozooplankton that feed predominantly near the surface on phytoplankton and microzooplankton, minimising the risk of predation from fish seems to be the ultimate factor behind DVM. These migrants appear to use deep water as a dark daytime refuge where their probability of being detected and eaten is lower than if they remained near the surface. Associated with these vertical movements of mesozooplankton, predators at higher trophic levels, including invertebrates, fish, marine mammals, birds and reptiles, may modify their behaviour to optimise the exploitation of their vertically migrating prey. Recent advances in biotelemetry promise to allow the interaction between migrating zooplankton and diving air-breathing vertebrates to be explored in far more detail than hitherto.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksnes, D. L. & J. Giske, 1990. Habitat profitability in pelagic environments. Mar. Ecol. Prog. Ser. 64: 209–215.

    Article  Google Scholar 

  • Baird, R. W., J. F. Borsani, M. B. Hanson & P. L. Tyack, 2002. Diving and night-time behavior of long-finned pilot whales in the Ligurian Sea. Mar. Ecol. Prog. Ser. 237: 301–305.

    Article  Google Scholar 

  • Baird, R. W., A. D. Ligon, S. K. Hooker & A. M. Gorgone, 2001. Subsurface and nighttime behaviour of pantropical spotted dolphins in Hawaii. Can. J. Zool. 79: 988–996.

    Article  Google Scholar 

  • Bollens, S. M. & B. W. Frost, 1989. Zooplanktivorous fish and variable diel vertical migration in the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 34: 1072–1083.

    Article  Google Scholar 

  • Bost, C. A., T. Zorn, Y. Le Maho & G. Duhamel, 2002. Feeding of diving predators and diel vertical migration of prey: King penguins’ diet versus trawl sampling at Kerguelen Islands. Mar. Ecol. Prog. Ser. 227: 51–61.

    Article  Google Scholar 

  • Carey, F. G. & G. H. Robison, 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. U.S. Fish. Bull. 79: 277–292.

    Google Scholar 

  • Cherel, Y., Y. Tremblay, E. Guinard & J. Y. Georges, 1999. Diving behaviour of female northern rockhopper penguins, Eudyptes chrysocome moseleyi, during the breeding period at Amsterdam Island (Southern Indian Ocean). Mar. Biol. 134: 375–385.

    Article  Google Scholar 

  • Cousyn, C., L. De Meester, J. K. Colbourne, L. Brendonck, D. Verschuren & F. Volckaert, 2001. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc. nati. Acad. Sci. 98: 6256–6260.

    Article  CAS  Google Scholar 

  • Croxall, J. P., I. Everson, G. L. Kooyman, C. Ricketts & R. W. Davis, 1985. Fur seal diving in relation to vertical distribution of krill. J. anim. Ecol. 54: 1–8.

    Article  Google Scholar 

  • Cushing, D. H., 1951. The vertical migration of planktonic Crustacea. Biol. Rev. 26: 158–192.

    Article  Google Scholar 

  • Dagorn, L., P. Bach & E. Josse, 2000. Movement patterns of large bigeye tuna (Thunnus obesus) in the open ocean, determined using ultrasonic telemetry. Mar. Biol. 136: 361–371.

    Article  Google Scholar 

  • Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnol. Oceanogr. 37: 1589–1595.

    Article  Google Scholar 

  • Dawidowicz, P. & C. J. Loose, 1994. Trade-offs in diel vertical migration by zooplankton–the costs of predator avoidance. Ecology 75: 2255–2263.

    Article  Google Scholar 

  • De Robertis, A., J. S. Jaffe & M. D. Ohman, 2000. Size-dependent predation risk and the timing of vertical migration in zooplankton. Limnol. Oceanogr. 45: 1838–1844.

    Article  Google Scholar 

  • Dodson, S. I., R. Tollrian & W. Lampert, 1997. Daphnia swimming behavior during vertical migration. J. Plankton Res. 19: 969–978.

    Article  Google Scholar 

  • Eckert, S. A., D. W. Nellis, K. L. Eckert & G. L. Kooyman, 1986. Diving patterns of two leatherback sea turtles (Dermochelys coriacea) during internesting intervals at Sandy Point, St Croix, U.S. Virgin Island. Herpetologica 42: 381–388.

    Google Scholar 

  • Eckert, S. A., K. L. Eckert, P. Ponganis & G. L. Kooyman, 1989. Diving behavior of leatherback sea turtles (Dermochelys coriacea). Can. J. Zool. 67: 2834–2840.

    Article  Google Scholar 

  • Enright, J. T., 1977. Diurnal vertical migration: adaptive significance and timing. Part 1. Selective advantage: a metabolic model. Limnol. Oceanogr. 222: 856–872.

    Article  Google Scholar 

  • Fedak, M., P. Lovell, B. McConnell & C. Hunter, 2002. Overcoming the constraints of long range radio telemetry from animals: getting more useful data from smaller packages. Integ. Comp. Biol. 42: 3–10.

    Article  Google Scholar 

  • Fiksen, O. & F. Carlotti, 1998. A model of optimal life history and diel vertical migration in Calanus finmarchicus. Sarsia 83: 129147.

    Google Scholar 

  • Forel, E. A., 1878. Faunistische Studien in den SĂĽĂźwasserseen der Schweiz. Zeitschrift Wissenschaftliche Zooloogie 30: 383–391.

    Google Scholar 

  • Frost, B. W. & S. M. Bollens, 1992. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus new-mani in relation to its predators. Can. J. Fish. aquat. Sci. 49: 1137–1141.

    Article  Google Scholar 

  • Gentry, R. L. & G. L. Kooyman, 1986. Methods of dive analysis. In Gentry, R. L. & G. L. Kooyman (eds), Fur Seals. Maternal Strategies on Land and Sea. Princeton University Press, New Jersey: 28–40.

    Google Scholar 

  • Hardy, A. C., 1936. Plankton ecology and the hypothesis of animal exclusion. Proc. linn. Soc. 148: 64–70.

    Google Scholar 

  • Hays, G. C., 1995. Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnol. Oceanogr. 40: 1461–1465.

    Article  Google Scholar 

  • Hays, G. C., C. A. Proctor, A. W. G. John & A. J. Warner, 1994. Interspecific differences in diel vertical migration of marine copepods: the implications of size, colour and morphology. Limnol. Oceanogr. 39: 1621–1629.

    Article  Google Scholar 

  • Hays, G. C., A. J. Warner & C. A. Proctor, 1995. Spatio-temporal patterns in the diel vertical migration of the copepod Metridia lucens derived from the Continuous Plankton Recorder survey. Limnol. Oceanogr. 40: 469–475.

    Article  Google Scholar 

  • Hays, G. C., R. P. Harris & R. N. Head, 1997. The vertical nitrogen flux caused by zooplankton diel vertical migration. Mar. Ecol. Prog. Ser. 160: 57–62.

    Article  CAS  Google Scholar 

  • Hays, G. C., C. R. Adams, A. C. Broderick, B. J. Godley, D. J. Lucas, J. D. Metcalfe & A. A. Prior, 2000. The diving behaviour of green turtles at Ascension island. Anim. Behay. 59: 577–586.

    Article  Google Scholar 

  • Hays, G. C., H. Kennedy & B. W. Frost, 2001. Individual variability in diel vertical migration of a marine copepod: why some individuals remain at depth when others migrate. Limnol. Oceanogr. 46: 2050–2054.

    Article  Google Scholar 

  • Hill, A. E., 1998. Diel vertical migration in stratified flows: implications for plankton dispersal. J. mar. Res. 56: 1069–1096.

    Article  Google Scholar 

  • Hooker, S. K., I. L. Boyd, M. Jessopp, O. Cox, J. Blackwell, P. L. Boveng & J. L. Bengtson, 2002. Monitoring the prey-field of marine predators: Combining digital imaging with datalogging tags. Mar. Mamm. Sci. 18: 680–697.

    Article  Google Scholar 

  • Horning, M. & F. Trillmich, 1999. Lunar cycles in diel prey migrations exert a stronger effect on the diving of juveniles than adult Galapagos fur seals. Proc. R. Soc. Lond. B. 226: 1127–1132.

    Article  Google Scholar 

  • Kremer, P. & J. N. Kremer, 1988. Energetic and behavioral implications of pulsed food availability for zooplankton. Bull. mar. Sci. 43: 797–809.

    Google Scholar 

  • Lampert, W., 1989. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3: 21–27.

    Article  Google Scholar 

  • Lampert, W., R-M. Schmitt & P. Muck, 1988. Vertical migration of freshwater zooplankton: test of some hypotheses predicting a metabolic advantage. Bull. mar. Sci. 43: 620–640.

    Google Scholar 

  • Leech, D. M. & C. E. Williamson, 2001. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnol. Oceanogr. 46: 416–420.

    Article  Google Scholar 

  • Longhurst, A. & W. G. Harrison, 1989. The biological pump: profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22: 47–123.

    Article  Google Scholar 

  • McConnell, B. J., C. Chambers & M. A. Fedak, 1992. Foraging ecology of southern elephant seals in relation to bathymetry and productivity of the Southern Ocean. Ant. Sci. 4: 393–398.

    Article  Google Scholar 

  • McLaren, I. A., 1963. Effect of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd Can. 26: 199–220.

    Google Scholar 

  • McLaren, I. A., 1974. Demographic strategy of vertical migration by a marine copepod. Am. Nat. 108: 91–102.

    Article  Google Scholar 

  • Neill, W. E., 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345: 524–526.

    Article  Google Scholar 

  • Nelson, D. R., J. N. McKibben, W. R. Strong Jr, C. G. Lowe, J. A. Sisneros, D. M. Schroeder & R. J. Lavenberg, 1997. An acoustic tracking of a megamouth shark, Megachasma pelagios: a crepuscular vertical migrator. Env. Biol. Fish. 49: 389–399.

    Article  Google Scholar 

  • Ohman, M. D., B. W. Frost & E. H. Cohen, 1983. Reverse diel vertical migration — an escape from invertebrate predators. Science 220: 1404–1407.

    Article  PubMed  CAS  Google Scholar 

  • Pearre, S., 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol. Rev. 78: 1–80.

    Article  PubMed  Google Scholar 

  • Rasmussen, O. I. & J. Giske, 1994. Life-history parameters and vertical distribution of Maurolicus muelleri in Masfjorden in summer. Mar. Biol. 120: 649–664.

    Article  Google Scholar 

  • Ringelberg, J., 1995. Changes in light intensity and diel vertical migration — a comparison of marine and fresh-water environments. J. mar. biol. Ass. U.K. 75: 15–25.

    Article  Google Scholar 

  • Ringelberg, J., 1999. The photobehavior of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews of the Cambridge Philosophical Society 74: 397–423.

    Article  Google Scholar 

  • Schnetzer, A. & D. K. Steinberg, 2002. Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea. Mar. Ecol. Prog. Ser. 234: 71–84.

    Article  Google Scholar 

  • Sekino, T. & T. Yoshioka, 1995. The relationship between nutritional condition and diel vertical migration of Daphnia galeata. Jap. J. Limnol. 56: 145–150.

    Article  Google Scholar 

  • Sekino, T. & N. Yamamura, 1999. Diel vertical migration of zooplankton: optimum migrating schedule based on energy accumulation. Evol. Ecol. 13: 267–282.

    Article  Google Scholar 

  • Southwood, A. L., R. D. Andrews, M. E. Lutcavage, F. V. Paladino, N. H. West, R. H. George & D. R. Jones, 1999. Heart rates and diving behavior of leatherback sea turtles in the eastern Pacific Ocean. J. exp. Biol. 202: 1115–1125.

    PubMed  Google Scholar 

  • Tarling, G. A., J. B. L. Matthews, P. David, O. Guerin & F. Buchholz, 2001. The swarm dynamics of northern krill (Meganyctiphanes norvegica) and pteropods (Cavolina inflexa) during vertical migration in the Ligurian Sea observed by an acoustic Doppler current profiler. Deep-Sea Res. I. 48: 1671–1686.

    Google Scholar 

  • Van Gool, E. & J. Ringelberg, 1998. Light-induced migration behaviour of Daphnia modified by food and predator kairomones. Anim. Beh. 56: 741–747.

    Article  Google Scholar 

  • Van Gool, E. & J. Ringelberg, 2002. Relationship between fish kairomone concentration in a lake and phototactic swimming by Daphnia. J. Plankton Res. 24: 713–721.

    Article  Google Scholar 

  • Wiebe, P. H., N. J. Copley & S. H. Boyd, 1992. Coarse-scale horizontal patchiness and vertical migration of zooplankton in Gulf Stream warm-core ring 82-H. Deep-Sea Res. 39: 247–278.

    Article  Google Scholar 

  • Wilson, R. P., K. Puetz, C. A. Bost, B. M. Culik, R. Bannasch, T. Reins & D. Adelung, 1993. Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner by candlelight. Mar. Ecol. Prog. Ser. 94: 101–104.

    Article  Google Scholar 

  • Wilson, R. P., Y. Ropert-Coudert & A. Kato, 2002a. Rush and grab strategies in foraging marine endotherms: the case for haste in penguins. Anim. Beh. 63: 85–95.

    Article  Google Scholar 

  • Wilson, R. P., A. Steinfurth, Y. Ropert-Coudert, A. Kato & M. Kurita, 2002b. Lip-reading in remote subjects: an attempt to quantify and separate ingestion, breathing and vocalisation in free-living animals using penguins as a model. Mar. Biol. 140: 17–27.

    Article  Google Scholar 

  • Wright, D., W. J. O’Brien & G. L. Vinyard, 1980. Adaptive value of vertical migration: a simulation model arguments for the predation hypothesis. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, New Hampshire: 138–147.

    Google Scholar 

  • Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bos-mina longirostris, body size selection versus visibility selection. Ecology 56: 232–237.

    Article  Google Scholar 

  • Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804–813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hays, G.C. (2003). A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. In: Jones, M.B., IngĂłlfsson, A., Ă“lafsson, E., Helgason, G.V., Gunnarsson, K., Svavarsson, J. (eds) Migrations and Dispersal of Marine Organisms. Developments in Hydrobiology, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2276-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2276-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6480-6

  • Online ISBN: 978-94-017-2276-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics