Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 51))

  • 346 Accesses

Abstract

Dislocation emission induced by a crack tip is probably the most important unsolved physical problem of the theory of dislocations. This problem is addressed in the Chapter using the approach named by John Gilman the nanofracture mechanics. To simplify mathematics and focus on the physical aspects of the problem, we study: (i) small deformations of a single cubic crystal (or nanoscale strains of a grain in a polycrystalline material), and (ii) small scale yielding caused by screw or edge dislocations which are collinear to the rectilinear crack front (plane model, that is, plane strain or plane stress or plane shear).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Smid and W. Boas (1935), Kristaliplastizitat, Springer Verlag, Berlin.

    Google Scholar 

  2. J. P. Hirth and J. Lothe (1982), Theory of Dislocations, New York, McGraw Hill.

    Google Scholar 

  3. A. M. Kosevich (1981), Physical Mechanics of Real Crystals [in Russian], Naukova Dumka, Kiev.

    Google Scholar 

  4. R W. K. Honeycomb (1968), Plastic Deformation of Metals, Edward Arnold Publ, London.

    Google Scholar 

  5. A. H. Cottrell (1964), The Mechanical Properties of Matter, Wiley, New York.

    Google Scholar 

  6. G. P. Cherepanov (1974), Mekhanika Khrupkogo Razrushenia, Nauka Press. Moscow: English edition (1979), Mechanics of Brittle Fracture ed. by R. de Wit and W. C. Cooley, Mc Graw Hill, New York.

    Google Scholar 

  7. R Hill (1950), The Mathematical Theory of Plasticity, Oxford, Clarendon Press, London and New York.

    Google Scholar 

  8. B. D. Armin and G. P. Cherepanov (1988), Elastic-Plastic Problems, ASME Press, New York.

    Google Scholar 

  9. R. Bullough and J. R. Matthews (1991), Deformation of crystalline materials, in Encyclopedia of Physics, ed. by R. G. Lerner and G. L. Trigg, pp. 243–244, VCH Publishers, New York.

    Google Scholar 

  10. J. R. Rice and R. Thomson (1974), Ductile versus brittle behavior of crystals, Philosophical Magazine, 29, pp. 73–97.

    Article  ADS  Google Scholar 

  11. R.Thomson (1986), Physics of fracture, in Solid State Physics, ed. by H. Ehrenreich and D. Turnbull, 39, pp. 1–129.

    Google Scholar 

  12. I.- H. Lin and R. Thomson (1986), Cleavage, dislocation emission, and shielding for cracks under general loading, Acta Metallurgica, 34, pp. 176–190.

    Google Scholar 

  13. J. R. Rice, G. E. Beltz, and Y. Sun (1992), Peierls framework for dislocation nucleation from a crack-tip, in Topics in Fracture and Fatigue, ed. by A. S. Argon, Springer Verlag, pp. 1–58.

    Chapter  Google Scholar 

  14. J. R. Rice (1992), Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mechanics and Physics of Solids 40, pp. 239–271.

    Article  ADS  Google Scholar 

  15. J. C. M. Li, (1981) Dislocation sources in Dislocation Modeling of Physical Systems, ed. by M. Ashby, R. Bullough, B. Hartley, and J. Hirth, pp. 498–518, Pergamon Press. New York.

    Google Scholar 

  16. J. C. M. Li (1986), Computer simulation of dislocations emitted from a crack, Scripta Metallurgica, 20, pp. 1477.

    Article  Google Scholar 

  17. J. S. Wang and P. M. Anderson (1991), Acta Metallurgica Materialia, 39, pp. 779.

    Article  Google Scholar 

  18. G. E. Beltz and J. S. Wang (1992), Acta Metallurgica Materialia, 40, pp. 1675.

    Article  Google Scholar 

  19. G. E. Beltz and J. R. Rice (1992), Acta Metallurgica Materialia, 40, S321.

    Article  Google Scholar 

  20. G. E. Beltz and J. R. Rice (1991), Dislocation nucleation versus cleavage decohesion at crack-tips, in Modeling the Deformation of Crystalline Solids, ed. by T. C. Lowe, A. D. Rollett, P. S. Follansbee, and G. S. Daehn, The Minerals, Metals and Materials Society.

    Google Scholar 

  21. J. R. Rice and G. E. Beltz (1994), The activation energy for dislocation nucleation at a crack, J. Mechanics and Physics of Solids, 42, pp. 333.

    Article  ADS  MATH  Google Scholar 

  22. G. P. Cherepanov (1988), Initiation of microcracks and dislocations, Soviet Applied Mechanics,23(12), pp. 1165–1176, American edition.

    Google Scholar 

  23. G. P. Cherepanov (1988), Growth of a microcrack under monotonic loading, Soviet Applied Mechanics,24(4), pp. 396–409, American edition.

    Google Scholar 

  24. G. P. Cherepanov (1989), Closure of microcracks during unloading and the formation of reverse dislocations, Soviet Applied Mechanics,24(7), pp. 635–648, American edition.

    Google Scholar 

  25. G. P. Cherepanov (1990), Construction of fracture mechanics, Soviet Applied Mechanics, 26(6), pp. 515–523, American edition.

    Google Scholar 

  26. G. P. Cherepanov (1988), Quantum fracture mechanics, Proceedings of the 7th Int. Conference on Fracture, Houston. Invited paper delivered by J. Rice at author’s request. Published also in Problemy Prochnosti (Strength of Materials), No. 2, pp. 3–9 (Translation by Plenum Press, pp. 155–163, 1990 ).

    Google Scholar 

  27. G. P. Cherepanov (1994), Nanofracture mechanics approach to dislocation generation and fracturing. Invited paper at the 12th U.S. National Congress of Applied Mechanics published in Applied Mechanics Review, 47(6), part 2., S326, (1994).

    Google Scholar 

  28. G. P. Cherepanov (1993), Some novel approaches in mechanics of composites, Invited paper at the 1993 Winter ASME Meeting published in Composite Materials and Structures, ed. by C. W. Bert, V. Birman, and D. Hui, ASME Press, pp. 1–12.

    Google Scholar 

  29. G. P. Cherepanov, A. Richter, V. E. Verijenko, S. Adali, and V. Sutyrin (1995), Dislocation generation and crack growth under monotonic loading, J. Applied Physics, 78 (10), pp. 6249–64.

    Article  ADS  Google Scholar 

  30. R. W. Armstrong (1966), Material Science and Engineering., 1, pp. 251.

    Article  Google Scholar 

  31. A. Kelly, W. R. Tyson, and A. H. Cottrell (1967), Philosophical Magazine, 15, pp. 567. 32

    Article  Google Scholar 

  32. C. Atkinson (1966), Dislocations and cracks in the theory of anisotropic elasticy, Int. J. Fracture, 2 (2), pp. 567–578.

    Google Scholar 

  33. B. S. Majumdar and S. J. Burns (1981), Crack-tip shielding–an elastic theory of dislocations and dislocation arrays near a sharp crack, Acta Metallurgica, 29 (2), pp. 579–588.

    Article  Google Scholar 

  34. Shiue Sham-Tsong and Lee Sanboh (1985), A thermodynamic approach to the interaction between dislocation and crack and its applications, Engineering Fracture Mechanics, 22 (6), pp. 1105–1115.

    Article  Google Scholar 

  35. S. N. G. Chu (1982), Elastic interaction between a screw dislocation and surface crack, J. Applied Physics, 53 (12), pp. 8678–8685.

    Article  ADS  Google Scholar 

  36. S. J. Burns (1986), Scripta Metallurgica, 20, pp. 1489.

    Article  Google Scholar 

  37. G. Michot and A. George (1986), Scripta Metallurgica., 20, pp. 1495.

    Article  Google Scholar 

  38. Y. H. Chiao and D. R. Clarke (1989), Direct observation of dislocation emission from crack tip in silicon at high temperature, Acta Metallurgica, 37, pp. 203–219.

    Article  Google Scholar 

  39. S. M. Ohr (1985), An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture, Materials Science Engineering, 72, pp. 1–35.

    Article  Google Scholar 

  40. S. Kobayashi and S. M. Ohr (1984) • J. Materials Science, 19, pp. 2273.

    Google Scholar 

  41. J. J. Gilman and H. C. Tong (1971), Quantum tunneling as an elementary fracture process, J. Applied Physics, 42 (9), pp. 3479–3486.

    Article  ADS  Google Scholar 

  42. S. N. Zhurkov (1965), Kinetic concept of the strength of solids, Int. J. Fracture Mechanics, 1 (4), pp. 311–323.

    Google Scholar 

  43. G. P. Cherepanov (1993), Introduction to singular integral equations in aerodynamics, Chapter in Method of Discrete Vortices by S. M. Belotserkovsky and I. M. Lifanov, CRC Press, London-Boca Raton.

    Google Scholar 

  44. G. P. Cherepanov (1986), On quasibrittle fracture, Applied Mathematics and Mechanics (PMM), 32 (6), pp. 1320–1337.

    Google Scholar 

  45. D. S. Dugdale (1960), Yielding of steel sheets containing slits, J. Mechanics Physics Solids., 8, pp. 100–108.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cherepanov, G.P. (1997). Dislocation Emission. In: Methods of Fracture Mechanics: Solid Matter Physics. Solid Mechanics and Its Applications, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2262-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2262-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4794-6

  • Online ISBN: 978-94-017-2262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics