Skip to main content

Cell-based panning as a means to isolate phage display Fabs specific for a bacterial surface protein

  • Chapter
  • 116 Accesses

Abstract

Surface proteins provide a multitude of functions for the bacterial cell. Antibodies to these proteins can provide tools for tagging bacteria and characterizing protein function. Phage display technology has emerged as a powerful method for producing monoclonal Fabs in Escherichia coli. In an effort to study the adhesion mechanisms of Streptococcus parasanguis FW213, Fabs specific for the surface adhesin protein Fap1 were produced using phage display. The immune repertoire of a mouse injected with purified Fapl was cloned into the phagemid vector pCOMB3, and a combinatorial Fab library was expressed in E. coli. A cell-based panning method using whole S. parasanguis cells was developed and has been shown to be a means for enriching for Fabs specific for the Fapl protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Fab:

fragment antigen binding

References

  1. Barbas CF III, Kang AS, Lerner RA, Benkovic SJ (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc Natl Acad Sci USA 88: 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  2. Barbas CF III, Lerner RA (1991). Combinatorial immunoglobulin libraries on the surface of phage (Phabs): Rapid selection of antigen-specific Fabs. Methods: Companion Methods Enzymol 2: 119–124.

    Article  CAS  Google Scholar 

  3. Bespalov I, Purmal AA, Glackin MP, Wallace SS, Melamede RJ (1996). Recombinant phabs reactive with 7,8—dihydro-8—oxoguanine, a major oxidative DNA lesion. Biochemistry 35: 2067–2078.

    Article  PubMed  CAS  Google Scholar 

  4. Better M, Chang CP, Robinson RR, Horwitz AH (1988). Escherichia coli secretion of an active chimeric antibody fragment. Science 240(4855): 1041–1043.

    Google Scholar 

  5. Bradbury A, Persic L, Werge T, Cattaneo A (1993). Use of living columns to select specific phage antibodies. Biotechnology (NY) 11: 1565–1569.

    Article  CAS  Google Scholar 

  6. Casson LP, Manser T (1995). Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen. J Exp Med 182: 743–750.

    Article  PubMed  CAS  Google Scholar 

  7. Chiswell DJ, McCafferty J (1992). Phage antibodies: Will new `coliclonal’ antibodies replace monoclonal antibodies? Trends Biotechnol Mar 10: 80–84.

    Article  CAS  Google Scholar 

  8. Chomczynski P, Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal Biochem 162: 156–159.

    Article  PubMed  CAS  Google Scholar 

  9. Elder BL, Boraker DK, Fives-Taylor PM (1982). Whole-bacterial cell enzyme-linked immunosorbent assay for Streptococcus sanguis fimbrial antigens. J Clin Microbiol 16: 141–144.

    PubMed  CAS  Google Scholar 

  10. Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77: 305–319.

    Article  PubMed  CAS  Google Scholar 

  11. Hill HR, Stockley PG (1996). Phage presentation. Mol Microbiol May 20: 685–692.

    Article  CAS  Google Scholar 

  12. Huse WD, Sastry L, Iverson SA, Kang AS, AltingMees M, Burton DR, Benkovic SJ, Lerner RA (1989). Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246 (4935): 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  13. Iba Y, Kurosawa Y (1997). Comparison of strategies for the construction of libraries of artificial antibodies. Immunol Cell Biol 75: 217–221.

    Article  PubMed  CAS  Google Scholar 

  14. Jacobsson K, Frykberg L (1996). Phage display shotgun cloning of ligand-binding domains of prokaryotic receptors approaches 100% correct clones. Biotechniques 20: 1070–1076.

    PubMed  CAS  Google Scholar 

  15. Kohler G, Milstein C (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    Article  PubMed  CAS  Google Scholar 

  16. Marks JD, Hoogenboom HR, Griffiths AD, Winter G (1992). Molecular evolution of proteins on filamentous phage. Mimicking the strategy of the immune system. J Biol Chem 267: 16007–16010.

    PubMed  CAS  Google Scholar 

  17. Martin AC, Cheetham JC, Rees AR (1991). Molecular modeling of antibody combining sites. Methods Enzymol 203: 121–153.

    Article  PubMed  CAS  Google Scholar 

  18. McCafferty J, Griffths AD, Winter G, Chiswell DJ (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348 (6301): 552–554.

    Article  PubMed  CAS  Google Scholar 

  19. Pereira S, Maruyama H, Siegel D, Van Belle P, Elder D, Curtis P, Herlyn D (1997). A model system for detection and isolation of a tumor cell surface antigen using antibody phage display. J Immunol Methods 203: 11–24.

    Article  PubMed  CAS  Google Scholar 

  20. Ruff-Jamison S, Glenney JR Jr (1993). Molecular modeling and site-directed mutagenesis of an antiphosphotyrosine antibody predicts the combining site and allows the detection of higher affinity interactions. Protein Eng 6: 661–668.

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook J, Maniatis T, Fritsch EF (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  22. Smith GP (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228 (4705): 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  23. Watters JM, Telleman P, Junghans RP (1997). An optimized method for cell-based phage display panning. Immunotechnology 3: 21–29.

    Article  PubMed  CAS  Google Scholar 

  24. Webster DM, Pedersen J, Staunton D, Jones A, Rees AR (1994). Antibody-combining sites. Extending the natural limits. Appl Biochem Biotechnol 47: 119132.

    Google Scholar 

  25. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994). Making antibodies by phage display technology. Annu Rev Immunol 12: 433–455.

    Article  PubMed  CAS  Google Scholar 

  26. Wu H, Mintz KP, Ladha M, Fives-Taylor P (1997). Isolation and characterization of Fap1, a fimbriae associated adhesin of Streptococcus parasanguis FW213. Mol Micro (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Fives-Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stephenson, A.E., Fives-Taylor, P., Melamede, R.J. (1998). Cell-based panning as a means to isolate phage display Fabs specific for a bacterial surface protein. In: Fives-Taylor, P.M., LeBlanc, D.J. (eds) Methods for studying the genetics, molecular biology, physiology, and pathogenesis of the streptococci. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2258-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2258-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5262-9

  • Online ISBN: 978-94-017-2258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics