Elastic Response of Multi-directional Coated-fiber Composites

  • N. J. Pagano
  • G. P. Tandon
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 34)


In this work a model is developed to approximate the elastic response of a composite body reinforced by coated, fibers oriented in various directions. The fundamental representative volume element is a three-phase concentric circular cylinder under prescribed displacement components. The microstress distribution inside the fiber, the coating, and the matrix has been determined under a uniform three-dimensional mechanical and/or hygrothermal loading. A parametric study has also been conducted to illustrate how a coating applied to the fiber influences the effective thermoelastic properties and can alter the state of stress at the fiber-matrix interface and thereby modify or control an observed mode of failure.


Representative Volume Element Fiber Volume Fraction Composite Cylinder Effective Elastic Property Coating Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Cooper and A. Kelly, Role of the interface in the fracture offiber-composite materials, ASTM STP 452, (1969), pp. 90–106.Google Scholar
  2. 2.
    H. L. Hancox and H. Wells, The effects of fibre surface coatings on the mechanical properties of CFRP, Fibre Sci. & Tech., 10 (1977), 9–22.CrossRefGoogle Scholar
  3. 3.
    J. H. Williams, Jr. and P. N. Kousiounelos, Thermoplastic fibre coatings enhance composite strength and toughness, Fibre Sci. & Tech., 11 (1978), 83–8.CrossRefGoogle Scholar
  4. 4.
    D. F. Adams, A micromechanical analysis of the influence of the interface on the performance of polymer-matrix composites, Proc. Amer. Soc. for Comp., First Technical Conference (1986), pp. 207–26.Google Scholar
  5. 5.
    L. T. Drzal, Composite interphase characterization, SAMPE J., 19 (5) (1983), 7–13.Google Scholar
  6. 6.
    T. Ishikawa, K. Koyama and S. Kobayashi, Thermal expansion coefficients of unidirectional composites, J. Comp. Mat., 12 (1978), 153–68.CrossRefGoogle Scholar
  7. 7.
    D. Iesan, Thermal stresses in composite cylinders, J. Thermal Stress, 3 (1980), 495–508.CrossRefGoogle Scholar
  8. 8.
    R. M. Christensen and H. Lo, Solutions for effective shear properties in three-phase sphere and cylinder models, J. Mech. Phys. Solids, 27 (1979), 315–30.ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Z. Hashin and B. W. Rosen, The elastic moduli of fiber-reinforced materials, J. Appl. Mech., 31 (1964), 223–32.ADSCrossRefGoogle Scholar
  10. 10.
    Y. Takeuchi, T. Furukawa and Y. Tanigawa, The effect of thermoelastic coupling for transient thermal stresses in a composite cylinder, ASME, WAM, DE-2 (1983).Google Scholar
  11. 11.
    Y. Mikata and M. Taya, Stress field in a coated continuous fiber composite subjected to thermo-mechanical loadings, J. Comp. Mat., 19 (1985), 554–79.CrossRefGoogle Scholar
  12. 12.
    B. W. Rosen, S. N. Chatterjee and J. J. Kibler, An analysis model for spatially oriented fiber composites, ASTM STP 617 (1977) pp. 243–54.Google Scholar
  13. 13.
    N. J. Pagano, The stress field in a cylindrically anisotropic body under two-dimensional surface tractions, J. Appl. Mech., 38 (1971), 1–6.CrossRefGoogle Scholar
  14. 14.
    Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech., 29 (1962), 143–50.MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    R. Y. Kim, UDRI (personal communication).Google Scholar
  16. 16.
    B. W. Rosen and L. S. Shu, On some symmetry conditions for three-dimensional fibrous composites, J. Comp. Mat., 5 (1971), 279–82.CrossRefGoogle Scholar
  17. 17.
    D. E. Walrath and D. F. Adams, Finite element micromechanics and minimechanics modeling of a three–dimensional carbon—carbon composite material, Dept report UWME–DR–501–106–1 (1985), 57 pp.Google Scholar
  18. 18.
    J. C. Halpin, Primer on composite materials: analysis, Technomic Publishing Co. Inc. Lancaster, PA (1984), 166 pp.Google Scholar
  19. 19.
    R. M. Jones, Mechanics of composite materials, McGraw-Hill, New York (1975), pp. 37–45.Google Scholar
  20. 20.
    G. P. Tandon and N. J. Pagano, Effect of constituent material properties on the elastic behavior of composites, Proc. Amer. Soc. for Comp., 2nd Technical Conference, University of Delaware (1987), pp. 429–40.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • N. J. Pagano
    • 1
  • G. P. Tandon
    • 2
  1. 1.AFWAL/MLBM, Wright-Patterson AFBUSA
  2. 2.AdTech Systems Research Inc.DaytonUSA

Personalised recommendations