Elastic Response of Composite Laminates

  • S. R. Soni
  • N. J. Pagano
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 34)


The research and rationale leading to the development of a recently proposed global-local model to examine the detailed elastic response of composite laminates is reviewed. The accuracy of the global-local model for elastic stress field analysis of composit? laminates is examined by comparison of solutions with this model to those given by purely local models developed in previous work. Emphasis is placed on free-edge laminates under interlaminar normal stresses of small magnitude since they present the most severe challenge to the model. This leads to a good under sanding of the range of validity of the model. The global-local model is used in conjunction with experimental data to examine a proposed failure criterion for delamination and to define the range where significant influence of the interlaminar stresses on free-edge laminate failure response is present.


Global-local model local model graphite-epoxy stress analysis elasticity composite laminates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, J. D., C. T. Sun, and G. Herrmann (1968), On the Vibrations of a Laminated Body,“ J. Appl. Mech., Vol. 35, p. 689.ADSzbMATHCrossRefGoogle Scholar
  2. Altus, E., A. Rotem, and M. Shmueli (1980), “Free Edge Effect in Angle Ply Laminates - A New Three Dimensional Finite Difference Solution,” J. Composite Materials, Vol. 14, p. 21.Google Scholar
  3. Blumberg, N. N. and V. P. Tamuzh (1980), “Edge Effects and Stress Concentrations in Multilaminate Composite Plates,” Mechanics of Composite Materials, pp. 298–307. Translated from Russian J1. Mekh. Komposita. Mater., Vol. 3, p. 424.Google Scholar
  4. Chang, F. H., D. E. Gordon, B. T. Rodini, and R. H. McDaniel (1976), “Real-Time Characterization of Damage Growth in Graphite/Epoxy Laminates,” J. Composite Materials, Vol. 10, p. 182.ADSCrossRefGoogle Scholar
  5. Daniel, I. M., R. E. Rowlands, and J. B. Whiteside (1974), “Effects of Material and Stacking Sequence on Behavior of Composite Plates with Holes,” Exp. Mech., Vol. 14, p. 1.CrossRefGoogle Scholar
  6. Dong, S. B., K. S. Pister, and R. L. Taylor (1962), “On the Theory of Laminated Anisotropic Shells and Plates,” J. Aero. Sci., Vol. 28, p. 969.Google Scholar
  7. Greszczuk, L. B. (1973), “Failure Mechanics of Composites Subjected to Compressive Loading,” Air Force Materials Laboratory Report AFML-TR-72–107.Google Scholar
  8. Harris, A., O. Orringer, and E. A. Witmer (1979), “A Multilayer, Traction-Free Edge, Quadrilateral, Warping Element for the Stress Analysis of Composite Plates and Shells,” Army Materials and Mechanics Research Center TR-79–26.Google Scholar
  9. Herakovich, C. T., A. Nagarkar, and D. A. O’Brien (1979), “Failure Analysis of Composite Laminates with Free Edges,” in Modern Developments in Composite Materials and Structures, J. Vinson, ed. (.ASME), N.Y., p. 53.Google Scholar
  10. Kim, R. Y. (1982), “Matrix Damage in Composite Laminates,” Presented at Eleventh Southeastern Conference on Theoretical and Applied Mechanics, held at Huntsville, Alabama, April 8–9.Google Scholar
  11. Konish, H. J., J. L. Swedlow, and T. A. Cruse (1972), “Experimental Investigation of Fracture in an Advanced Fiber Composite,” J. Composite Materials, Vol. 6, p. 114.Google Scholar
  12. Kulkarni, S. V., J. S. Rice, and B. W. Rosen (1975), “An Investigation of the Compressive Strength of Kevlar 49/Epoxy Composites,” Composites, Vol. 6, p. 217.CrossRefGoogle Scholar
  13. Lo, K. H., R. M. Christensen, and E. M. Wu (1977), “A High Order Theory of Plate Deformation - Part 2: Laminated Plates,” J. Appl. Mech., Vol. 44, p. 669.ADSzbMATHCrossRefGoogle Scholar
  14. Ludwig, W., H. Erbacher, and J. Visconti (1976), “B-1 Composite Horizontal Stabilizer Development,” J. Composite Materials, Vol. 10, p. 205.ADSCrossRefGoogle Scholar
  15. Pagano, N. J. and S. R. Soni, “Global Local Laminate Variational Model,” to be published, Int. J. Solids Structures.Google Scholar
  16. Pagano, N. J. (1978), “Stress Fields in Composite Laminates,” Int. J. Solids Structures, Vol. 14, pp. 385–400.zbMATHCrossRefGoogle Scholar
  17. Pagano, N. J. (1974), “On the Calculation of Interlaminar Normal Stress in Composite Laminates,” J. Composite Mat., Vol. 8, pp. 65–82.ADSCrossRefGoogle Scholar
  18. Pagano, N. J. and R. B. Pipes (1971), “The Influence of Stacking Sequence on Laminate Strength,” J. Composite Materials, Vol. 5, p. 50.ADSCrossRefGoogle Scholar
  19. Pagano, N. J. and R. B. Pipes (1973), “Some Observations on the Interlaminar Strength of Composite Laminates,” Int. J. Mech. Sci., Vol. 15, p. 679.CrossRefGoogle Scholar
  20. Pagano, N. J. (1974), “Exact Moduli of nisotropic Laminates,” in Composite Materials, 2, Mechanics of Composite Materials, Edited by G. P. Sendeckyj, Academic Press, N.Y., pp. 23–44.Google Scholar
  21. Pagano, N. J. (1978b), “Free Edge Stress Fields in Composite Laminates,” Int. J. Solids and Structures, Vol. 14, p. 401.zbMATHCrossRefGoogle Scholar
  22. Pagano, N. J. and A. S. D. Wang (1971), “Further Study of Composite Laminates Under Cylindrical Bending,” J. Composite Materials, Vol. 5, p. 521.ADSCrossRefGoogle Scholar
  23. Pagano, N. J. (1970), “Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates,” J. Composite Materials, Vol. 4, p. 20.Google Scholar
  24. Pagano, N. J. and E. F. Rybicki (1974), “On the Significance of Effective Modulus Solutions for Fibrous Composites,” J. Composite Materials, Vol. 8, p. 214.ADSCrossRefGoogle Scholar
  25. Pagano, N. J. (1970), “Influence of Shear Coupling in Cylindrical Bending of Anisotropic Laminates,” J. Composite Materials, Vol. 4, p. 330.MathSciNetADSCrossRefGoogle Scholar
  26. Partsevskii, V. V. (1980), “Approximate Analysis of Mechanisms of Fracture of Laminated Composites at a Free Edge,” Mechanics of Composite Materials, pp. 179–185. Translation of Russian J1. Mekh. Kompositn. Mater., Vol. 2, p. 246.Google Scholar
  27. Pipes, R. B. and N. J. Pagano (1970), “Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension,” J. Composite Mat., Vol. 4, pp. 538–548.Google Scholar
  28. Pipes, R. B. (1972), “Solution of Certain Problems in the Theory of Elasticity for Laminated Anisotropic Systems,” Doctor’s Thesis, University of Texas at Arlington, Arlington, Texas.Google Scholar
  29. Puppo, A. H. and H. A. Evensen (1970), “Interlaminar Shear in Laminated Composites Under Generalized Plane Stress,” J. Composite Materials, Vol. 4, p. 204.ADSCrossRefGoogle Scholar
  30. Raju, I. S., J. D. Whitcomb, and J. G. Goree (1981), “A New Look at Numerical Analyses of Free Edge Stresses in Composite Laminates,” NASA Tech. Paper 1751.Google Scholar
  31. Reissner, E. and Y. Staysky (1961), “Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates,” J. Appl. Mech., Vol. 28, p. 402.ADSzbMATHCrossRefGoogle Scholar
  32. Reissner, E. (1950), “On a Variational Theorem in Elasticity,” J. Math. Phys., Vol. 29, p. 90.MathSciNetzbMATHGoogle Scholar
  33. Rybicki, E. F. (1971), “Approximate Three-Dimensional Solutions for Symmetric Laminates Under Inplane Loading,” J. Composite Materials, Vol. 5, p. 354.ADSCrossRefGoogle Scholar
  34. Rybicki, E. F. and N. J. Pagano (1976), “A Study on the Influence of Microstructure on the Modified Effective Modulus Approach for Composite Laminates,” Proceedings of the 1975 International Conference on Composite Materials, 2, p. 149.Google Scholar
  35. Salomon, N. J. (1980), “An Assessment of the Interlaminar Stress Problem in Laminated Composites,” J. Composite Matl., Supplement 14, p. 177.ADSCrossRefGoogle Scholar
  36. Spilker, R. L. and T. C. T. Ting (1981), “Stress Analysis of Composites,” Army Materials and Mechanics Research Center, Watertown, Mass., Technical Report #AMMRC-TR-81–5.Google Scholar
  37. Spilker, R. L. and S. C. Chou (1980), “Edge Effects in Symmetric Composite Laminates: Importance of Satisfying the Traction-Free Edge Condition,” J. Composite Materials, Vol. 14, p. 2.Google Scholar
  38. Srinivas, S. and A. K. Rao (1970), “Bending, Vibration, and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates,” Int. J. Solids Struct., Vol. 6, p. 1463.zbMATHCrossRefGoogle Scholar
  39. Srinivas, S. (1973), “A Refined Analysis of Composite Laminates,” J. Sound and Vibration, Vol. 30, p. 495.ADSzbMATHCrossRefGoogle Scholar
  40. Stanton, E. L., L. M. Crain, and T. F. Neu (1977), “A Parametric Cubic Modelling System for General Solids of Composite Material,” Int. J. Numerical Methods in Engineering, Vol. 11, pp. 653–670.ADSzbMATHCrossRefGoogle Scholar
  41. Sun, C. T., J. D. Achenbach, and G. Herrmann (1968), “Continuum Theory for a Laminated Medium,” J. Appl. Mech., Vol. 35, p. 467.ADSzbMATHCrossRefGoogle Scholar
  42. Sun, C. T. and J. M. Whitney (1973), “Theories for the Dynamic Response of Laminated Plates,” AIAA J., Vol. 11, p. 178.ADSCrossRefGoogle Scholar
  43. Tong, P., S. T. Mau, and T. H. H. Pian (1974), “Derivation of Geometric Stiffness and Mass Matrices for Finite Element Hybrid Models,” Int. J. Solids and Structures, Vol. 10, p. 919.zbMATHCrossRefGoogle Scholar
  44. Waddoups, M. E., J. R. Eisenmann, and B. E. Kaminski (1971), “Macroscopic Fracture Mechanics of Advanced Composite Materials,” J. Composite Materials, Vol. 5, p. 446.ADSCrossRefGoogle Scholar
  45. Wang, A. S. D. and F. W. Crossman (1977), “Some New Results on Edge Effect in Symmetric Composite Laminates,” J. Composite Materials, Vol. 11, p. 92.ADSCrossRefGoogle Scholar
  46. Wang, S. S. and I. Choi (1982), “Boundary Layer Effect in Composite Laminates: Part I - Free Edge Stress Singularities, Part II - Free Edge Stress Solutions and Basic Considerations,” J. Applied Mechanics, Vol. 49, p. 541.ADSzbMATHCrossRefGoogle Scholar
  47. Whitney, J. M. and C. T. Sun (1973), “A Higher Order Theory for Extensional Motion of Laminated Composites,” J. Sound and Vibration, Vol. 30, pp. 85–97.ADSzbMATHCrossRefGoogle Scholar
  48. Whitney, J. M. and R. J. Nuismer (1974), “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Composite Mat., Vol. 8, pp. 253–265.ADSCrossRefGoogle Scholar
  49. Whitney, J. M. and N. J. Pagano (1970), “Shear Deformation in Heterogeneous Anisotropic Plates,” J. Appl. Mech., Vol. 37, p. 1031.ADSzbMATHCrossRefGoogle Scholar
  50. Yang, P. C.,. H. Norris, and Y. Staysky (1966), “Elastic Wave Propagation in Heterogeneous Plates,” Int. J. Solids Struct., Vol. 2 , p. 665.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • S. R. Soni
    • 1
  • N. J. Pagano
    • 2
  1. 1.University of Dayton Research InstituteDaytonUSA
  2. 2.AFWAL/MLBM, Wright-Patterson AFBUSA

Personalised recommendations