Stress Fields in Composite Laminates

  • N. J. Pagano
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 34)


A new theory is proposed to define the complete stress field within an arbitrary composite laminate. The theory is based upon an extension of Reissner’s variational principle to laminated bodies. Weaknesses in previous laminate theories are discussed and it is demonstrated how these are overcome in the present formulation. Comparison with existing numerical elasticity solutions for a class of boundary value problems in which steep stress gradients are present shows extremely close agreement.


Stress Field Composite Laminate Free Edge Present Theory Finite Element Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Pagano and R. B. Pipes. The influence of stacking sequence on laminate strength. J. Composite Mat. 5, 50 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    N. J. Pagano and R. B. Pipes, Some observations on the interlaminar strength of composite laminates. Int. Mech. Sci. 15. 679 (1973).CrossRefGoogle Scholar
  3. 3.
    A. H. Puppo and H. A. Evensen, Interlaminar shear in laminated composites under generalized plane stress. J. Composite Mat. 4. 204 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    R. B. Pipes and N.J. Pagano. Interlaminar stresses in composite laminates under uniform axial extension. J. Composite Mat. 4. 538 (1970).Google Scholar
  5. 5.
    L. B. Greszczuk, Failure mechanics of composites subjected to compressive loading. Air Force Materials Laboratory Report AFML-TR-72–107 (Aug. 1973).Google Scholar
  6. 6.
    I. M. Daniel, R. E. Rowlands and J. B. Whiteside, Effects of material and stacking sequence on behavior of composite plates with holes, Exp. Mech. 14. 1 (1974).CrossRefGoogle Scholar
  7. 7.
    S. V. Kulkarni, J. S. Rice and B. W. Rosen, An investigation of the compressive strength of kevlar 49lepoxy composites. Composites 6. 217 (1975).CrossRefGoogle Scholar
  8. 8.
    F. H. Chang. D. E. Gordon, B. T. Rodini and R. H. McDaniel. Real-time characterization of damage growth in graphitelepoxy laminates. J. Composite Mat. 10, 182 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    E. Reissner and Y. Staysky. Bending and Stretching of certain types of heterogeneous aeolotropic elastic plates. J. Appl. Mech. 28, 402 (1961).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    S. B. Dong. K. S. Pister and R. L. Taylor. On the theory of laminated anisotropic shells and plates. J. Aero. Sci. 28. 969 (1962).Google Scholar
  11. 11.
    N. J. Pagano. Exact moduli of anisotropic laminates. In Composite Materials, Mechanics of Composite Materials (Edited by G. P. Sendeckj, Vol. 2, pp. 23–44. Academic Press. New York (1974).Google Scholar
  12. 12.
    N. J. Pagano and A. S. D. Wang, Further study of composite laminates under cylindrical bending. J. Composite Mat. 5. 521 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    M. E. Waddoups. J. R. Eisenmann and B. E. Kaminski, Macroscopic fracture mechanics of advanced composite materials. J. Composite Mat. 5. 446 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Whitney and R. J. Nuismer. Stress fracture criteria for laminated composites containing stress concentrations. J. Composite Mat. 8. 253 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    H. T. Hahn, Fracture behavior of composite laminates. In Fracture Mechanics and Technology, (Edited by G. C. Sih and C. I. Chow) Vol. I. pp. 285–296. Noordhoff. Leyden (1977).Google Scholar
  16. 16.
    W. Ludwig. H. Erbacher and J. Visconti. B-I composite horizontal stabilizer development. J. Composite Mat. 10. 205 (1976 ).ADSCrossRefGoogle Scholar
  17. 17.
    A. S. D. Wang and F. W. Crossman, Some new results on edge effect in symmetric composite laminates. J. Composite Mat. II. 92 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    R. B. Pipes, Solution of certain problems in the theory of elasticity for laminated anisotropic systems. Doctor’s Thesis. University of Texas at Arlington, Arlington. Texas (1972).Google Scholar
  19. 19.
    E. F. Rybicki. Approximate three-dimensional solutions for symmetric laminates under inplane loading. J. Composite Mut. 5, 354 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    E. L. Stanton. L. M. Crain and T. F. Neu. A parametric cubic modelling system for general solids of composite material. Int. J. Num. Meth. Engng II. 653 (1977).CrossRefGoogle Scholar
  21. 21.
    D. B. Bogy. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 35. 460 (1968).ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    N. J. Pagano. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Composite Mat. 4. 20 (1970).Google Scholar
  23. 23.
    N.J. Pagano, Influence of shear coupling in cylindrical bending of anisotropie laminates. J. Composite Mat. 4. 330 (1970).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    S. Srinivas and A. K. Rao. Bending, vibration. and buckling of simply supported thick orthotropic rectangular plates and laminates. lai. J. Solids Structures. 6. 1463 (1970).zbMATHCrossRefGoogle Scholar
  25. 25.
    P. C. Yang. C. H. Norris and Y. Staysky, Elastic wave propagation in heterogeneous plates. Int. J. Solids Structures. 2. 665 (1966).CrossRefGoogle Scholar
  26. 26.
    J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous anisotropic plates. J. Appf. Mech. 37. 1031 (1970).CrossRefGoogle Scholar
  27. 27.
    J. M. Whitney and C. T. Sun. A higher order theory for extensional motion of laminated composites. J. Sound Vibras. 30, 85 (1973).ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    N. J. Pagano, On the calculation of interlaminar normal stress in composite laminates. J. Composite Mat. 8. 65 (1974).ADSCrossRefGoogle Scholar
  29. 29.
    C. T. Sun. J. D. Achenbach and G. Herrmann, Continuum theory for a laminated medium. J. Appl. Mech. 35, 467 (1968).ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    J. D. Achenbach, C. T. Sun and G. Herrmann. On the vibrations of a laminated body. J. Appl. Mech. 35. 689 (1968).ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    C. T. Sun and J. M. Whitney. Theories for the dynamic response of laminated plates. AIAA J. II. 178 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    S. Srinivas, A refined analysis of composite laminates. J. Sound Vibrat. 30, 495 (1973).ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    E. Reissner. On a variational theorem in elasticity. J. Math. Phys. 29. 90 (1950).MathSciNetzbMATHGoogle Scholar
  34. 34.
    J. C. Halpin and N. J. Pagano. Consequences of environmentally induced dilatation in solids. In Recent Advances in Engineering Science. (Edited by A. C. Eringen ) pp. 33–46. Gordon & Breach, New York (1970).Google Scholar
  35. 35.
    N. J. Pagano. Free edge stress fields in composite laminates. Ins. J. Solids Structures 14. 401–406 (1978).zbMATHCrossRefGoogle Scholar
  36. 36.
    E. Reissner, Note on the theorem of the symmetry of the stress tensor. J. Math. Phys. 23, 192 (1944).MathSciNetzbMATHGoogle Scholar
  37. 37.
    E. F. Rybicki and N. J. Pagano. A study on the influence of microstructure on the modified effective modulus approach for composite laminates. Proc. 1975 Int. Conf. Composite Mat.. 2. 149 (1976).Google Scholar
  38. 38.
    N. J. Pagano and E. F. Rybicki, On the significance of effective modulus solutions for fibrous composites. J. Composite Mut. 8. 214 (1974).ADSCrossRefGoogle Scholar
  39. 39.
    N. J. Pagano. Stress Fields in Composite Laminates. Air Force Materials Laboratory Report AFML-TR-77–114 (Aug. 1977).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • N. J. Pagano
    • 1
  1. 1.Nonmetallic Materials Division, Air Force Materials LaboratoryWright-Patterson AFBUSA

Personalised recommendations