Advertisement

Exact Moduli of Anisotropic Laminates

  • N. J. Pagano
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 34)

Abstract

One of the most important aspects of the analysis of the response of composite materials is related to the studies of the overall behavior of laminates composed of anisotropic layers. In this phase of the analysis, we are concerned with the relationship between forces and moments per unit length and the deformations which they produce. These relations may be termed the “effective” laminate constitutive equations since they define the geometric response caused by loads exerted on the laminate, as distinguished from the conventional implication of an elastic constitutive equation, namely the stress-strain relationship of an infinitesimal material element. Once the effective constitutive law is formulated, theories can be developed based upon consideration of the laminate as a unit, rather than resorting to a layer by layer elasticity analysis. Once a particular boundary value problem is solved, however, one can determine the detailed stress distribution throughout the laminate. Another motivation for the study of effective laminate moduli is the popular use of the laminate as a model for the behavior of complex heterogeneous materials, such as composites reinforced with three-dimensional networks of fibers (Halpin and Pagano, 1969; Berkowitz and Cohen, 1970; Halpin et al., 1971). Finally, proper interpretation of data from even the most routine experiments involving composite laminates requires appreciation of an effective constitutive relation.

Keywords

Surface Traction Monoclinic Symmetry Laminate Theory Interlaminar Stress Classical Lamination Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashton, J. E., and Whitney, J. M. (1970). Theory of Laminated Plates. Technomic, Westport, Connecticut.Google Scholar
  2. Behrens, E. (1967). J. Acoust. Soc. Amer. 42, 378.ADSzbMATHCrossRefGoogle Scholar
  3. Berkowitz, H. M., and Cohen, L. J. (1970). Elastic Properties of Multi-directionally Reinforced Composites. McDonnell Douglas Tech. Paper 10064.Google Scholar
  4. Chou, P. C., Carleone, J., and Hsu, C. M. (1972). J. Compos. Mater. 6, 80.ADSCrossRefGoogle Scholar
  5. Dong, S. B., Pister, K. S., and Taylor, R. L. (1962). J. Aerosp. Sci. 29, 969.zbMATHGoogle Scholar
  6. Halpin, J. C., and Pagano, N. J. (1969). J. Compos. Mater. 3, 720.Google Scholar
  7. Halpin, J. C., and Pagano, N. J. (1970). In “Recent Advances in Engineering Science” (A. C. Eringen, ed.), pp. 33–46. Gordon and Breach, New York.Google Scholar
  8. Halpin, J. C., Jerina, K., and Whitney, J. M. (1971). J. Compos. Mater. 5, 36.ADSCrossRefGoogle Scholar
  9. Hearmon, R. F. S. (1961). “Applied Anisotropie Elasticity.” Oxford, London and New York.Google Scholar
  10. Khoroshun, L. P. (1966). Soc. Appl. Mech. 2, 9.ADSCrossRefGoogle Scholar
  11. Lehknitskii, S. G. (1963). “Theory of Elasticity of an Anisotropie Elastic Body.” Holden-Day, San Francisco, California.Google Scholar
  12. Pagano, N. J. (1969). J. Compos. Mater. 3, 398.ADSCrossRefGoogle Scholar
  13. Pagano, N. J. (1970a). J. Compos. Mater. 4, 20.Google Scholar
  14. Pagano, N. J. (1970b). J. Compos. Mater. 4, 330.MathSciNetADSCrossRefGoogle Scholar
  15. Pagano, N. J., and Hatfield, S. J. (1972). J. AIAA 10, 931.Google Scholar
  16. Pagano, N. J., and Wang, A. S. D. (1971). J. Compos. Mater. 5, 521.ADSCrossRefGoogle Scholar
  17. Pipes, R. B., and Pagano, N. J. (1970). J. Compos. Mater. 4, 538.Google Scholar
  18. Postura, G. W. (1955). Geophysics 20, 780.ADSCrossRefGoogle Scholar
  19. Rybicki, E. F. (1971). J. Compos. Mater. 5, 354.ADSCrossRefGoogle Scholar
  20. Rytov, S. M. (1956). Sou. Phys. Acoust. 2, 68.Google Scholar
  21. Salamon, M. D. G. (1968). Int. J. Rock Mech. Min. Sci. 5, 519.CrossRefGoogle Scholar
  22. Staysky, Y. (1900). Proc. Amer. Soc. Civil Eng. J. Eng. Mech. Div. 87, 31.Google Scholar
  23. Tabaddor, F. (1972). J. Appl. Mech. 39, 598.ADSCrossRefGoogle Scholar
  24. Timoshenko, S. (1925). J. Opt. Soc. Amer. 11, 233.ADSCrossRefGoogle Scholar
  25. Tsai, S. W. (1966). AFML-TR-66–149, Part I I.Google Scholar
  26. Tsai, S. W., and Pagano, N. J. (1968). In “Composite Materials Workshop” (S. W. Tsai, J. C. Halpin, and N. J. Pagano, eds.), pp. 233–253. Technomic, Westport, Connecticut.Google Scholar
  27. White, J. E., and Angona, F. A. (1955). J. Acoust. Soc. Amer. 27, 311.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • N. J. Pagano
    • 1
  1. 1.Non-Metallic Materials Division, Air Force Materials LaboratoryWright-Patterson Air Force BaseUSA

Personalised recommendations