Skip to main content

Transition to the Dynamic Behaviour of Engineering Materials

  • Chapter
Mechanical Behaviour of Engineering Materials
  • 328 Accesses

Abstract

In this chapter, we introduce the subject of the response of metallic materials to dynamic loading. In this context, if we consider the term “dynamic” to be solely characterized as “time-dependent”, then we are in fact, as Lindholm (1962, 1964 and 1978) pointed out, including the entire range of material performance. In other words, the commonly called “static” or “quasi-static” deformation, e.g., creep and relaxation, is, in effect, “dynamic” or “time-dependent”. The majority of us, however, may be more accustomed to thinking of dynamic loading as associated with high loading rates or high deformation rates, with the adjective “high” referring to rates above those achieved on a standard testing machine. In this, the distinction of higher rates from lower rates is often made, however, not on the basis of time-dependence of the material behaviour, but rather on the necessity of including inertia forces in the pertaining dynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghan, R. L. and Nutting, J. (1980) Structure and properties of low-carbon steel after deformation to high strains, Metal Sci. 14, 233–7.

    Article  Google Scholar 

  • Barraclough, D. R and Sellars, C. M. (1974) in: Mechanical Properties at High Rates of Strain, Inst. Phys. Conf. Ser. 21, pp. 111–23.

    Google Scholar 

  • Bedford, A. J., Wingrove, A. L. and Thompson, K. R. L. (1974) The Phenomenon of adiabatic shear deformation, J. Aust. Inst. Metals 19 (1), 61–73.

    Google Scholar 

  • Blicharski, M. and Gorczyka, J. (1978) Structural inhomogeneity of deformed austentic stainless steel, Metal Sci. 12, 303–12.

    Article  Google Scholar 

  • Bodner, S. R. and Merzer, A. (1978) MML Rep. No. 55, Technion, Israel.

    Google Scholar 

  • Bodner, S. R. and Partom, Y. (1975) Constitutive equations for elastic-viscoelastic strain-hardening materials, J. Appl. Mech. 42, June 1975, 385–9.

    Article  ADS  Google Scholar 

  • Campbell, J. D. (1968) Closing comments by session chairmen, in Mechanical Behavior of Materials under Dynamic Loads, Ed. U. S. Lindholm, Springer, New York. pp. 410–14.

    Google Scholar 

  • Campbell, J. D. (1970) Dynamic Plasticity of Metals, Springer-Verlag, Vienna.

    Google Scholar 

  • Campbell, J. D., Eleiche, A. M. and Tsao, M. C. C. (1977) Strength of metals and alloys at high strains and strain rates, in: Battelle Colloq. on Fundamental Aspects of Structural Alloy Design, R. I. Jaffe and B. A. Wilcox (editors), Plenum, New York, pp. 545–63.

    Chapter  Google Scholar 

  • Campbell, J. D., Ponter, A. R. S. and Duffy, J. (1978) Euromech-Symp. III on Constitutive Modelling in Inelastisity, Marianske Lazne, Czechoslovakia.

    Google Scholar 

  • Chiem, C. Y. and Duffy, J. (1979) Brown University Rep. NSF ENG 75–18532 /9

    Google Scholar 

  • Clifton, R J. (1979) Plastic wave theory-supported by experiments, in: Proceedings of the Second Conference on the Mechanical Properties ofMaterials at High Rates of Strain, J. Harding (editor), Oxford, March 28–30, 1979, The Institute of Physics, Conference Series Number 47, pp. 174–86.

    Google Scholar 

  • Costin, L. S., Crisman, E. E., Hawley, R. H. and Duffy, J. (1979) On the localization of plastic flow in mild steel tubes under dynamic torsional loading, in: Proceedings of the Second Conference on the Mechanical Properties ofMaterials at High Rates of Strain, J. Harding (editor), Oxford, 28–30, 1979, The Institute of Physics, Conference Series Number 47, pp. 90–100.

    Google Scholar 

  • Davies, E. D. H. and Hunter, S. C. (1963) The dynamic compression testing of solids by the method of the Split Hopkinson Bar, J. Mech. And Phys. of Solids 11, 155–79.

    Google Scholar 

  • Dormeval, R. (1987) The adiabatic shear phenomenon, in: Materials at High Strain Rates, T. Z. Blazynski (Ed.), Elsevier, London, 47–70.

    Google Scholar 

  • Duffy, J. (1979) The J. D. Campbell memorial lecture: Testing techniques and material behaviour at high rates of strain, in: Proceedings of the Second Conference on the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor), Oxford, March 28–30, 1979, The Institute of Physics, Conference Series Number 47, pp. 1–15.

    Google Scholar 

  • Duffy, J. Campbell, J. D. and Hawley, R. H. (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100–0 aluminum, J. Appl. Mech. 38, March 1971, 83–91.

    Google Scholar 

  • Eichelberger, R. J. (1965) Hypervelocity impact, in Behavior of Materials Under Dynamic Loading, N.J. Huffington, Jr. (Ed.), ASME, New York, pp. 155–87.

    Google Scholar 

  • Eleiche, A. M. and Campbell, J. D. (1976a) Tech. Rep. ARML-TR-76–90, Air Force Materials Laboratory, Wright-Patterson Air Force Base, USA.

    Google Scholar 

  • Eleiche, A. M. and Campbell, J. D. (1976b) Strain-rate effects during reverse torsional shear, Exptl Mech. 16 (8), 281–90.

    Article  Google Scholar 

  • Follansbee, P. S. (1986) In. Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena

    Google Scholar 

  • L. E. Murr, K. P. Staudhammer and M. A. Meyers (editors), Marcel Dekker, New York, Chap. 24. Hopkinson, B. (1905) Proc. Roy. Soc. A 74, 498.

    Google Scholar 

  • Klepaczko, J. (1968) Strain rate history effects for polycrystalline aluminum and theory of intersections, J. Mech. Phys. Solids 16, 255–66.

    Google Scholar 

  • Klepaczko, J. (1975) Mater. Sci. Engng. 18, 121–36.

    Google Scholar 

  • Klepaczko, J., Frantz, R A. and Duffy, J. (1977) Polska Akademia Nauk, Instytut Podstawowych Problemow Techniki, Engng. Trans. 25, 3–22.

    Google Scholar 

  • Kolsky, H. (1960) Viscoelastic waves, Proc. International Symp. on Stress Wave Propagation, N. Davids, Ed., Interscience, New York, pp. 693–711.

    Google Scholar 

  • Kolsky, H. (1965) The propagation of stress pulses in linear viscoelastic solids, Philosophical Magazine 1, pp. 693–711.

    Article  ADS  Google Scholar 

  • Kolsky, H. and Douch, L. S. (1962) Experimental studies in plastic wave propagation, J. Mechanics and Physics of Solids 10, 195–223.

    Article  ADS  Google Scholar 

  • Kressel, H. and Brown, N. (1967) Lattice defects in shock-deformed and cold-worked nickel, J Appl. Phys. 38 (4), 1618–25.

    Article  ADS  Google Scholar 

  • Lindholm, U.S. (1962) Some problems involved in testing materials at high strain rates, Proc. Army Conf. on Dynamic Behavior of Materials and Structures, Springfield, Mass., September 1962, pp. 14–41.

    Google Scholar 

  • Lindholm, U. S. (1964) Some experiments with the Split Hopkinson Pressure Bar, J. Mech.and Phys. Of Solids 12, 317–35.

    Google Scholar 

  • Lindholm, U. S. (1965) Dynamic deformation of metals, in Behavior of Materials under Dynamic Loading, N.J. Huffington, Jr. (Editor), ASME, New York, pp. 42–61.

    Google Scholar 

  • Lindholm, U. S. (1978) Deformation maps in the region of high dislocation velocity, in: High Velocuty Deformation of Solids, K. Kawata and J. Shioiri (editors), Springer-Verlag, New York.

    Google Scholar 

  • Malin, A. S. and Hatherly, Y. M. (1979) Microstructure of cold-rolled copper, Metal Sci. 13, 463–72. Muff, L. E. ( 1975 ) Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Murr, L. E. (1981a) Residual microstructure–mechanical property relationships in shock loaded metals and alloys, in: Shock-Wave and High-Strain-Rate Phenomena in Metals, edited by M. A. Meyers and L. E. Murr, Plenum Press, New York, Chap. 37, pp. 607–73.

    Chapter  Google Scholar 

  • Murr, L. E. (1981b) Effects of peak pressure, pulse duration, and repeated loading on the residual structure and properties of shock deformed metals and alloys, in: Shock-Wave and High-Strain-Rate Phenomena in Metals, edited by M. A. Meyers and L. E. Murr, Plenum Press, New York, Chap. 42, pp. 753–77.

    Chapter  Google Scholar 

  • Murr, L. E. (1987) Metallurgical effects of shock and high-strain-rate loading, in: Materials at High Strain Rates, T. Z. Blazynski (Editor), Elsevier, London, 1–46.

    Google Scholar 

  • Murr, L. E., Inal, O. T. and Morales, A. A. (1967) Direct observations of vacancies and vacancy-type defects in molybdenum following uniaxial shock-wave propagation, Acta Met. 24, 261–270.

    Article  Google Scholar 

  • Murr, L. E. and Meyers, M. A. (1983) Metallurgical effects of shock and pressure waves in metals, in: Explosive Welding, Forming and Compaction, T. A. Blazynski (Editor), Applied Science Publishers, London, Chapter 3, 83–121.

    Google Scholar 

  • Murr, L. E., Staudhammer, K. P. and Meyers, M. A. (editors), (1986) Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Marcel Dekker, New York.

    Google Scholar 

  • Ponter, A., R. S. (1978) Rep. No. 78–12, Dept. of Engineering, University of Leicester.

    Google Scholar 

  • Rogers, H. C. (1979) Ann. Rev. Mat. Sci. 9, 283.

    Google Scholar 

  • Rogers, H. C. (1983) Adiabatic shearing–General nature and material aspects, in: Material Behavior under High Stress and Ultra High Loading Rates, edited by J. Mescall and V. Weiss, Plenum Press, New York, pp. 101–18.

    Chapter  Google Scholar 

  • Senseny, P. E., Duffy, J. and Hawley, R. H. (1978) Experiments on strain rate history and temperature effects during plastic deformation of close-packed metals, J. Appl. Mech. 45, March 1978, 60–6.

    Article  ADS  Google Scholar 

  • Stelly, M. and Dormeval, R. (1978) Some results on the dynamic deformation of copper, IUTAM Symp. on High Velocity Deformation of Solids, Tokyo, Japan, Aug. 24–27, 1977, K. Kawata and J. Shioiri (Eds.), Springer-Verlag, New York, pp. 82–97.

    Google Scholar 

  • Stelly, M. and Dormeval, R. (1986) Adiabatic shearing, In: Metallurgical Applications of Shock-wave and High-strain-rate Phenomena, Murr, L. E., Staudhammer, K. P. and Meyers, M. A. (editors), Marcel Dekker, New York., Chap. 32, pp. 607–32.

    Google Scholar 

  • Tanaka, K. and Nojima, T. (1979) Dynamic and static strength of steels, in: Proceedings of the Second Conference on the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor), Oxford, 28–30, 1979, The Institute of Physics, Conference Series Number 47, pp. 166–73.

    Google Scholar 

  • Wilson, M. L., Hawley, R. H. and Duffy, J. (1979) Brown University, Rep. NSF ENG 75–18532 /8.

    Google Scholar 

  • Zener, C. and Hollomon, J. H. (1944) Effect of strain rate upon plastic flow of steel, J. Appl. Phys. 15, 22–32.

    Google Scholar 

  • Zener, C. (1948) The micro-mechanism of fracture, in: Fracturing of Metals, ASM, Cleveland, Ohio, pp. 3–31.

    Google Scholar 

  • ASM Handbook (1985) Mechanical Testing, ASM Int. 1, Vol. 8, Melno Park, Ohio 1985, pp.187–297. Bell, J. F. (1959) Propagation of plastic waves in solids. J. Appl. Phys. 30 (2), 196–201.

    Google Scholar 

  • Blazynski, T. Z. (Ed.) (1983) Explosive Welding, Forming and Compaction, Applied Science Publishers, London.

    Google Scholar 

  • Crossland, B. (1954) The effect of fluid pressure on the shear properties of metals, Proc. Inst. Mech. Engineers 68, 935–46.

    Google Scholar 

  • El-Sobky, H. (1983) Mechanics of explosive welding in: Explosive Welding, Forming and Compaction, Blazynski, T. Z. (Ed.), Applied Science Publishers, London, pp. 189–217.

    Google Scholar 

  • Harding, J. (Editor) (1979) Mechanical Properties at High Rates of Strain, 1979, Proceedings of the Second Conference on the Mechanical Properties of Materials at High Rates of Strain, Oxford, March 28-30, 1979

    Google Scholar 

  • Harding, J. (1983) High-rate straining and mechanical properties of materials, in: Explosive Welding, Forming and Compaction, Blazynski, T Z (Ed.), Applied Science Publishers, London, pp. 123–58.

    Google Scholar 

  • Hauser, F. E. and Simmons, J. A. and Dorn, J. E. (1961) Strain rate effects in plastic wave propagation.“ In Response ofMetals to High Velocity Deformation, Proc. Metallurgical Soc. Conf, P. G. Shewmon and V. F. Zackay, Eds., Vol. 9, Interscience, N.Y, pp. 93–114.

    Google Scholar 

  • Hill, R. (1968) On constitutive inequalities for simple materials - I, J. Mech. Phys. Solids 16, 229–42.

    Google Scholar 

  • Hopkins, H. G. (1966) Dynamic non-elastic deformations of metals, in: Applied Mechanics Surveys, Abramson, H. N., Liebowitz, H., Crowley, J. M. and Juhasz, S. (Eds.), Spartan Books, Inc., Washington, D. C., pp. 847–67.

    Google Scholar 

  • Jahsman, W. E. (1971) Re-examination of the Kolsky technique for measuring dynamic material behavior, Trans. ASME, J. Appl. Mech., March 1971, 75–82..

    Google Scholar 

  • Kolsky, H. (1949) An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc., Sec. B, Vol. 62, 676–700.

    Google Scholar 

  • Lindholm, U. S. (Editor) (1968) Mechanical Behavior of Materials Under Dynamic Loads, Springer, New York.

    Google Scholar 

  • Lindholm, U. S. and Yeakley, L. M. (1965) Dynamic deformation of single and polycrystalline aluminum, J. Mech. Phys. of Solids 13, 41–53.

    Google Scholar 

  • Malvern, L. E. and Efron, L. (1964) Stress Wave Propagation and Dynamic Testing; Longitudinal Plastic Wave Propagation in Annealed Aluminum Bars, Tech. Rept. No.1, Grant G-24898, National Science Foundation, Michigan State University, East Lansing, Mich., September 1964.

    Google Scholar 

  • Manjoine, M. J. (1944) Influence of rate of strain and temperature on yield stresses of mild steel, J. Appl. Mech.11, Trans. ASME 66, Ser. A, 211–18.

    Google Scholar 

  • Meyers, M. A. (1978) A mechanism for dislocation generation in shock-wave deformation, Scripta Metallurgica 12, 21–6.

    Google Scholar 

  • Meyers, M. A. and Mun, L. E. (1983) Propagation of stress waves in metals, in: Explosive Welding, Forming and Compaction, Blazynski, T. Z. (Ed.), Applied Science Publishers, London, pp. 17–82.

    Google Scholar 

  • Murr, L. E. and Meyers, M. A. (1983) Metallurgical effects of shock and pressure waves in metals, in Explosive Welding, Forming and Compaction, T. Z. Blazynski (Editor), Applied Science Publishers, New York, Chapter 3, pp. 83–121.

    Google Scholar 

  • Pearson, J. (1983) Introduction to high-energy rate metal working, in: Explosive Welding, Forming and Compaction, Blazynski, T. Z. (Ed.), Applied Science Publishers, London, pp. 1–15.

    Google Scholar 

  • Perrone, N. (1965) On a simplified method for solving impulsively loaded structures of rate-sensitive materials, J. Appl. Mech., Paper No. 65-APM-10.

    Google Scholar 

  • Prümmer, R. (1983) Powder Compaction, in: Explosive Welding, Forming and Compaction, Blazynski, T. Z. (Ed.), Applied Science Publishers, London, pp. 369–95.

    Google Scholar 

  • Tardif, H. P. and Marquis, H. (1963) Some dynamic properties of plastics, Canadian Aeronautics and Space I (9), 205–13.

    Google Scholar 

  • Wongwiwat, K. and Murr, L. E. (1978) Effect of shock pressure, pulse duration, and grain size on shock- deformation-twinning in molybdenum, Materials Science and Engineering 35, 273–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haddad, Y.M. (2000). Transition to the Dynamic Behaviour of Engineering Materials. In: Mechanical Behaviour of Engineering Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2231-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2231-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5473-9

  • Online ISBN: 978-94-017-2231-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics