Skip to main content

The Benefits and Limits of Social Interaction: The Case of Mathematical Proof

  • Chapter
Mathematical Knowledge: Its Growth Through Teaching

Part of the book series: Mathematics Education Library ((MELI,volume 10))

Abstract

Teaching mathematical proof is a goal in most mathematical curricula. This target is sometimes explicitly stated, that is “mathematical proof” can appear as a chapter in the textbook, or it is sometimes expressed as a general aim of the teaching. In this latter case, the aim is the training in the construction and the formulation of deductive reasoning, “mathematical proof” not being named as such. Actually, that is the situation at the present time in France: the last French programmes1 (1985) for the eighth grade state that students should be trained progressively to construct deductive reasoning, and this training must be intensive in the ninth grade. The situation is the same in other countries, like in Québec:

“To develop pupils’ logical thinking by bringing them to structure their reasoning [...] It is therefore advisable to demand that the pupils’ problem-solving is based on logical and structured reasoning.”

(Objectif du programme2 du secondaire V, Québec, 1984)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsac, G and Mante, M.: 1983, ‘De “problèmes ouverts” dans nos classes du premier cycle, Petix x 2, 5–33.

    Google Scholar 

  2. Bachelard, G.: 1938, La formation de l’esprit scientifique, Vrin, 1975, Paris.

    Google Scholar 

  3. Balacheff, N.: 1982, ‘Preuve et démonstration au collège’, Recherches en didactique des mathématiques 3 (3), 261–304.

    Google Scholar 

  4. Balacheff, N.: 1988, ‘Une étude des processus de preuve en mathématiques chez des élèves de collège’, Thèse d’état, Université Joseph Fourier, Grenoble.

    Google Scholar 

  5. Balacheff, N.: 1988. ‘Aspects of Proof in Pupils’ Practice of School Mathematics’, in Pimm, D. (ed.), Mathematics, Teachers and Children, Hodder and Stoughton, London, pp. 216–235.

    Google Scholar 

  6. Bell, A.: 1976, ‘The Learning of General Mathematical Strategies’, Ph.D. University of Nottingham.

    Google Scholar 

  7. Bishop, A.J. 1988, Mathematical Enculturation: A Cultural Perspective on Mathematics Education, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  8. Bourdieu, P.: 1980, Le sens pratique, Edition de Minuit, Paris.

    Google Scholar 

  9. Braconne, A.: 1987, Compréhension de la démonstration en géométrie chez les profes-

    Google Scholar 

  10. seurs et les élèves au secondaire,Maitrise ès Art, Université de Laval, Québec.

    Google Scholar 

  11. Brousseau, G.: 1983, ‘Les obstacles épistémologiques et les problèmes en mathématiques’ Recherches en didactique des mathématiques, 4(2), 164–198

    Google Scholar 

  12. Brousseau, G.: 1986, ‘Basic Theory and Methods in the Didactics of Mathematics’, in Verstapen, P.F.L. (ed.), Second Conference on Systematic Co-operation Between Theory and Practice in Mathematics Education, Instituut voor Leerplanontwikkeling, Enschede, pp. 109–161.

    Google Scholar 

  13. Capponi, M.T et al.: 1986 Apprentissage du raisonnement, IREM de Grenoble, Grenoble.

    Google Scholar 

  14. Cobb, P.: 1986, ‘Contexts, Goals, Beliefs, and Learning Mathematics’ For the Learning of Mathematics 6(2), 2–9.

    Google Scholar 

  15. Cooney, T.J.: 1985, ‘A Beginning Teacher’s View of Problem Solving’ Journal for Research in Mathematics Education 16 324–336.

    Google Scholar 

  16. Fawcett, H.P.: 1938, The Nature of Proof. 1938 NCTM Year Book. Columbia University Teachers College, New York.

    Google Scholar 

  17. Galbraith, P.L.: 1979, Pupils Proving, Shell Center for Mathematics Education, University of Nottingham.

    Google Scholar 

  18. Gaud, D. and Guichard, J.P.: 1984, ‘Apprentissage de la démonstration’, Petit x 4, 5–25.

    Google Scholar 

  19. Hanna, G.: 1983, Rigorous Proof in Mathematics Education, Curriculum Series, 48, The Ontario Institute for Studies in Education, Toronto.

    Google Scholar 

  20. Inhelder, B. and Caprona, D.: 1985, ‘Constructivisme et création de nouveauté’, Archives de psychologie 53 (204), 7–18.

    Google Scholar 

  21. Lakatos, I.: 1976, Proofs and Refutations,Cambridge University Press, Cambridge. Lampert, M.: 1988, ‘The Teacher’s Role in Reinventing the Meaning of Mathematical

    Google Scholar 

  22. Knowing in the Classroom, in Proceedings of the PME-NA,pp. 433–480.

    Google Scholar 

  23. Martin, G. and Harel, G.: 1989, ‘Proof Frames of Preservice Elementary Teachers’ Journal for Research in Mathematics Education 20(1), 41–51.

    Google Scholar 

  24. Moeschler, J.: 1985, Argumentation et conversation, Hatier-Credif, Paris.

    Google Scholar 

  25. NCTM: 1989, Curriculum and Evaluation Standard for School Mathematics, NCTM, Reston.

    Google Scholar 

  26. Oléron, P.: 1984, L’argumentation, PUF, Paris.

    Google Scholar 

  27. Perelman, C.: 1970, Le champ de l’argumentation, Presses Universitaires, Bruxelles. Popper, K.R.: 1979, Objective Knowledge, Revised Edition, Oxford University Press, Oxford.

    Google Scholar 

  28. Schoenfeld, A.H.: 1988, ‘When Good Teaching Leads to Bad Results: The Disaster of Well Taught Mathematics Courses’, Educational Psychologist 23 (2)

    Google Scholar 

  29. Schoenfeld, A.H.: 1990, ‘On Mathematics as Sense-Making: An Informal Attack on the Unfortunate Divorce of Formal and Informal Mathematics’, in Perkins, D.N., Segal, J. and Voss, J. (eds.), Informal Reasoning in Education, Erlbaum, Hillsdale, pp. 311–343.

    Google Scholar 

  30. Senk, S.: 1985, ‘How Well Do Students Write Geometry Proofs? Mathematics Teacher, 74 19–26.

    Google Scholar 

  31. Usiskin, Z.: 1982 Van Hiele Levels and Achievement in Secondary School Geometry, CDASSG Project, SE 038 813.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balacheff, N. (1991). The Benefits and Limits of Social Interaction: The Case of Mathematical Proof. In: Bishop, A.J., Mellin-Olsen, S., Van Dormolen, J. (eds) Mathematical Knowledge: Its Growth Through Teaching. Mathematics Education Library, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2195-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2195-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4095-4

  • Online ISBN: 978-94-017-2195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics