Negotiation of Mathematical Meaning and Learning Mathematics



The teaching-learning process is considered as a social interaction. In this microethnographical case study an elementary teacher and first graders are observed when they ascribe mathematical meanings of numbers and of numerical operations to empirical phenomena. Because of the differences of their ascriptions, the teacher and the students negotiate mathematical meanings. Also interactional regularities help the participants to cope with ambiguity. According to different theoretical approaches, the text discusses some indirect relations between social interaction and mathematics learning. Several classrooms episodes are interpreted to illustrate specific theoretical concepts.


Mathematical Knowledge Mathematics Classroom Mathematical Meaning Symbolic Interactionism Mathematical Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andelfinger, B. and Voigt, J.: 1986, ‘Vorführstunden und alltäglicher Mathematikunterricht — Zur Ausbildung von Referendaren im Fach Mathematik (S US II)’, Zentralblatt für Didaktik der Mathematik 1, 2–9.Google Scholar
  2. Balacheff, N.: 1986, ‘Cognitive versus situational analysis of problem-solving behaviors’, For the Learning of Mathematics 6 (3), 10–12.Google Scholar
  3. Balacheff, N. and Laborde, C.: 1988, ‘Social interactions for experimental studies of pupils’ conceptions: Its relevance for research in didactics of mathematics’, in: H.-G. Steiner and A. Vermandel (eds.), Foundations and Methodology of the Discipline Mathematics Education. Proceedings of the 2nd TME-Conference, IDM, Bielefeld, pp. 189–195.Google Scholar
  4. Bartolini-Bussi, M.: 1990, ‘Mathematics knowledge as a collective enterprise’, in: Proceedings of the 4th SCTP Conference in Brakel, West Germany, IDM, Bielefeld, 121–151.Google Scholar
  5. Bauersfeld, H.: 1980, ‘Hidden dimensions in the so-called reality of a mathematics classroom’, Educational Studies in Mathematics 11, 23–41.CrossRefGoogle Scholar
  6. Bauersfeld, H.: 1982, ‘Analysen zur Kommunikation im Mathematikunterricht’, in H. Bauersfeld et al. (ed.), Analysen zum Unterrichtshandeln, Aulis, Köln, pp. 1–40.Google Scholar
  7. Bauersfeld, H.: 1988, ‘Interaction, construction, and knowledge — Alternative perspectives for mathematics education’, in T. Cooney and D. Grouws (eds.), Effective Mathematics Teaching, N.C.T.M., Reston/Virginia, pp. 27–46.Google Scholar
  8. Bauersfeld, H. and Krummheuer, G., and Voigt, J.: 1988, ‘Interactional theory of learning and teaching mathematics and related microethnographical studies’, in H.-G. Steiner and A. Vermandel (eds.), Foundations and Methodology of the Discipline Mathematics Education, Antwerp, 174–188.Google Scholar
  9. Bishop, A. J. and Geoffree, F.: 1986, ‘Classroom organisation and dynamics’, in B. Christiansen, A. G. Howsen, and M. Otte (eds.), Perspectives on Mathematics Education, Reidel, Dordrecht, 309–365.CrossRefGoogle Scholar
  10. Blumer, H.: 1969, Symbolic Interactionism: Perspective and Method, Prentice-Hall, Englewood Cliffs.Google Scholar
  11. Brousseau, G.: 1983, ‘Les obstacles épistémologiques et les problèmes en mathématiques’, Recherches en didactique des mathématiques 2, 164–197.Google Scholar
  12. Bruner, J.: 1966, ‘Some elements of discovery’, in L. S. Shulman and E. R. Keisler (eds.), Learning by Discovery: A Critical Appraisal, Rand McNally, Chicago, 101–113.Google Scholar
  13. Bruner, J.: 1976, ‘Early rule structure: The case of peek-a-boo’, in R. Harré (ed.), Life Sentences, Wiley and Sons, London.Google Scholar
  14. Bruner, J.: 1986, Actual Minds, Possible Worlds, Harvard University Press, Cambridge/Mass.Google Scholar
  15. Carraher, T. N., Carraher, D. W., and Schliemann, A. D.: 1985, ‘Mathematics in the streets and in schools’, British Journal of Developmental Psychology 3, 21–29.CrossRefGoogle Scholar
  16. Cobb, P.: 1990, ‘Multiple perspectives’, in L. P. Steffe and T. Wood (eds.), Transforming Children’s Mathematical Education: International Perspectives, Lawrence Erlbaum Association, Hillsdale, N.J., 200–215.Google Scholar
  17. Cobb, P., Wood, T., and Yackel, E.: 1991, ‘A constructivist approach to second grade mathematics’, inGoogle Scholar
  18. E. von Glasersfeld (ed.), Constructivism in Mathematics Education,Kluwer, Dordrecht, 157–176. Doise, W. and Mugny, G.: 1984, The Social Development of the Intellect,Pergamon, Oxford. duBois-Reymond, M. and Still, B.: 1974, Neuköllner Schulbuch, 2. Band,Suhrkamp, Frankfurt/M. Edwards, D. and Mercer, N.: 1987, Common Knowledge. The Development of Understanding in the Classroom,Methuen, London.Google Scholar
  19. Falk, G. and Steinert, H.: 1973, ‘Über den Soziologen als Konstrukteur von Wirklichkeit, das Wesen der sozialen Realität, die Definition sozialer Situationen und die Strategien ihrer Bewältigung’, in H. Steinert (ed.), Symbolische Interaktion. Arbeiten zu einer reflexiven Soziologie, Klett, Stuttgart, pp. 13–46.Google Scholar
  20. Garfinkel, H.: 1967, Studies in Ethnomethodology, Prentice-Hill, New Jersey.Google Scholar
  21. Goffman, E.: 1974, Frame Analysis -An Essay on the Organization of Experience, Harvard University Press, Cambridge.Google Scholar
  22. Griffin, P. and Mehan, H.: 1981, ‘Sense and ritual in classroom discourse’, in E Coulmas (ed.), Conversational Routine, Mounton, The Hague, pp. 187–214.Google Scholar
  23. Harré, R.: 1984, Personal Beeing. A Theory for Individual Psychology, Harvard University Press, Cambridge.Google Scholar
  24. Jungwirth, H.: 1991, ‘Interaction and gender–findings of a microethnographical approach to classroom discourse’, Educational Studies in Mathematics 22, 263–284.CrossRefGoogle Scholar
  25. Krummheuer, G.: 1983, Algebraische Termumformungen in der Sekundarstufe I - Abschlußbericht eines Forschungsprojektes, Materialien und Studien Bd. 31, IDM, Bielefeld.Google Scholar
  26. Krummheuer, G.: 1991, ‘Argumentationsformate im Mathematikunterricht’, in H. Maier and J. Voigt (eds.), Interpretative Unterrichtsforschung, Aulis, Köln, 57–78.Google Scholar
  27. Kumagai, K.: 1988, ‘Research on the ‘sharing process’ in the mathematics classroom–An attempt to construct a mathematics classroom’, Tsukaba Journal of Educational Study in Mathematics Japan 7, 247–257.Google Scholar
  28. Lakatos, J.: 1976, Proofs and Refutations - The Logic of Mathematical Discovery, Cambridge University Press, London.CrossRefGoogle Scholar
  29. Lampert, M.: 1990, ‘Connecting inventions with conventions’, in L. P. Steife and T. Wood (eds.)Google Scholar
  30. Transforming Children’s Mathematics Education,Lawrence Erlbaum, Hillsdale/N.J., 253–265. Leiter, K.: 1980, A Primer on Emomethodology,Oxford University Press, New York.Google Scholar
  31. Maier, H. and Voigt, J.: 1989, ‘Die entwickelnde Lehrerfrage im Mathematikunterricht, Teil I’Google Scholar
  32. Mathematica Didactica 12, 23–55.Google Scholar
  33. Maier, H. and Voigt, J.: 1992, ‘Teaching styles in mathematics education’, Zentralblatt für Didaktik der Mathematik 7, 249–253.Google Scholar
  34. McNeal, M. G.: 1991, The Social Context of Mathematical Development, Doctoral dissertation, Purdue University.Google Scholar
  35. Mead, G. H.: 1934, Mind, Self and Society, University of Chicago Press, Chicago.Google Scholar
  36. Mehan, H.: 1979, Learning Lessons, Harvard University, Cambridge.Google Scholar
  37. Neth, A. and Voigt, J.: 1991, ‘Lebensweltliche Inszenierungen. Die Aushandlung schulmathematischer Bedeutungen an Sachaufgaben’, in H. Maier and J. Voigt (eds.), Interpretative Unterrichtsforschung, Aulis, Köln, 79–116.Google Scholar
  38. Perret-Clermont, A.-N.: 1980, Social Interaction and Cognitive Development in Children, Academic Press, London.Google Scholar
  39. Saxe, G. B.: 1990, Culture and Cognitive Development: Studies in Mathematical Understanding, Lawrence Erlbaum, Hillsdale, N.J.Google Scholar
  40. Schubring, G.: 1988, ‘Historische Begriffsentwicklung und Lernprozeß aus der Sicht neuerer mathematikdidaktischer Konzeptionen (Fehler, obstacles, Transposition)’, Zentralblatt für Didaktik der Mathematik 20, 138–148.Google Scholar
  41. Solomon, Y.: 1989, The Practice of Mathematics, Routledge, London.Google Scholar
  42. Steife, L. P., von Glasersfeld, E., Richards, J., and Cobb, P.: 1983, Children’s Counting Types: Philosophy, Theory, and Application, Praeger Scientific, New York.Google Scholar
  43. Steinbring, H.: 1991, ‘Mathematics in teaching processes. The disparity between teacher and student knowledge’, Recherches en didactique des mathématiques 11(1), 65–108.Google Scholar
  44. Steinbring, H.: 1993, ‘The relation between social and conceptual conventions in everyday mathematics teaching’, in L. Bazzini and H.-G. Steiner (eds.), Proceedings of the Second Italian-German Bilateral Symposium on Didactics of Mathematics (in press).Google Scholar
  45. Struve, H.: 1990, ‘Analysis of didactical developments on the basis of rational reconstructions’, Proceedings of the BISME-2, Bratislava, 99–119.Google Scholar
  46. Struve, R. and Voigt, J.: 1988, ‘Die Unterrichtsszene im Menon-Dialog–Analyse und Kritik auf dem Hintergrund von Interaktionsanalysen des heutigen Mathematikunterrichts’, Journal für Mathematik-Didaktik 9 (4), 259–285.Google Scholar
  47. Voigt, J.: 1985, ‘Pattern und routines in classroom interaction’, Recherches en Didactique des Mathématiques 6 (1), 69–118.Google Scholar
  48. Voigt, J.: 1989, ‘Social functions of routines and consequences for subject matter learning’, International Journal of Educational Research 13 (6), 647–656.CrossRefGoogle Scholar
  49. Voigt, J.: 1990, ‘The microethnographical investigation of the interactive constitution of mathematical meaning’, Proceedings of the 2nd Bratislava International Symposium on Mathematics Education, 120–143.Google Scholar
  50. Voigt, J.: 1991, ‘Interaktionsanalysen in der Lehrerfortbildung’, Zentralblau far Didaktik der Mathematik 5, 161–168.Google Scholar
  51. von Glasersfeld, E.: 1987, Wissen, Sprache und Wirklichkeit. Arbeiten zum radikalen Konstruktivismus, Vieweg, Braunschweig.Google Scholar
  52. Vygotsky, L. S.: 1978, Mind in Society, Harvard University, Cambridge, MA.Google Scholar
  53. Vygotsky, L. S.: 1981, ‘The genesis of higher mental functions’, in J. V. Wertsch (ed.), The Concept of Activity in Soviet Psychology, Sharpe, Armonk.Google Scholar
  54. Walkerdine, V.: 1988, The Mastery of Reason, Routledge, London.Google Scholar
  55. Walther, G.: 1982, ‘Acquiring mathematical knowledge’, Mathematics Teaching 101, 10–12. Wittgenstein, L.: 1967, Remarks on the Foundations of Mathematics, Blackwell, Oxford.Google Scholar
  56. Wittmann, E. Ch. and Müller, G. N.: 1990, Handbuch produktiver Rechenübungen, Band 1., Klett, Stuttgart.Google Scholar
  57. Wood, T. and Yackel, E.: 1990, ‘The development of collaborative dialogue in small group interactions’, in L. P. Steife and T. Wood (eds.), Transforming Children’s Mathematics Education, Lawrence Erlbaum Association, Hillsdale, N.J., 200–215.Google Scholar
  58. Yackel, E., Cobb, P., Wood, T., Wheatley, G., and Merkel, G.: 1990, ‘The importance of social interaction in children’s construction of mathematical knowledge’, in T. J. Cooney (ed.), Teaching and Learning Mathematics in the 1990’s, NCTM, Reston, pp. 12–21.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  1. 1.Fachbereich ErziehungswissenschaftUniversität HamburgHamburg 13Germany

Personalised recommendations