Skip to main content

Locally Weighted Learning for Control

  • Chapter
Lazy Learning

Abstract

Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aha, D. W. & Salzberg, S. L. (1993). Learning to catch: Applying nearest neighbor algorithms to dynamic control tasks. In Proceedings of the Fourth International Workshop on Artificial Intelligence and Statistics, pp. 363–368, Ft. Lauderdale, FL.

    Google Scholar 

  • Albus, J. S. (1981). Brains, Behaviour and Robotics. BYTE Books, McGraw-Hill.

    Google Scholar 

  • Atkeson, C. G. (1990). Using local models to control movement. In Touretzky, D. S. (ed.), Advances in Neural Information Processing Systems 2, pp. 316–323. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Atkeson, C. G. (1994). Using local trajectory optimizers to speed up global optimization in dynamic programming. In Hanson, S. J., Cowan, J. D. & Giles, C. L. (eds.), Advances in Neural Information Processing Systems 6, pp. 663–670. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Atkeson, C. G., Moore, A. W. & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence Review, this issue.

    Google Scholar 

  • Barto, A. G., Sutton, R. S. & Watkins, C. J. C. H. (1990). Learning and Sequential Decision Making. In Gabriel, M. & Moore, J. W. (eds.), Learning and Computational Neuroscience, pp. 539–602. MIT Press, Cambridge, MA.

    Google Scholar 

  • Barto, A. G., Bradtke, S. J. & Singh, S. P. (1995). Learning to act using real-time dynamic programming. Artificial Intelligence 72(1): 81-138.

    Google Scholar 

  • Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ. Bertsekas, D. P. & Tsitsiklis, J. N. (1989). Parallel and Distributed Computation. Prentice Hall.

    Google Scholar 

  • Cannon, R. H. (1967). Dynamics of Physical Systems. McGraw-Hill.

    Google Scholar 

  • Cohn, D. A., Ghahramani, Z. & Jordan, M. I. (1995). Active learning with statistical models. In Tesauro, G., Touretzky, D. & Leen, T. (eds.), Advances in Neural Information Processing Systems 7. MIT Press.

    Google Scholar 

  • Connell, M. E. & Utgoff, P. E. (1987). Learning to control a dynamic physical system. In Sixth National Conference on Artificial Intelligence, pp. 456–460, Seattle, WA. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Conte, S. D. & De Boor, C. (1980). Elementary Numerical Analysis,McGraw Hill.

    Google Scholar 

  • Deng, K. & Moore, A. W. (1995). Multiresolution Instance-based Learning. In Proceedingsof the International Joint Conference on Artificial Intelligence,pp. 1233–1239. Morgan Kaufmann.

    Google Scholar 

  • Friedman, J. H. & Stuetzle, W. (1981). Projection Pursuit Regression. Journal of the American Statistical Association, 76 (376): 817–823.

    Article  Google Scholar 

  • Grosse, E. (1989). LOESS: Multivariate Smoothing by Moving Least Squares. In C. K. Chul, L. L. S. & Ward, J. D. (eds.), Approximation Theory VI. Academic Press.

    Google Scholar 

  • Hastie, T. & Loader, C. (1993). Local regression: Automatic kernel carpentry. Statistical Science 8 (2): 120–143.

    Google Scholar 

  • Jordan, M. I. & Jacobs, R. A. (1990). Learning to control an unstable system with forward modeling. In Touretzky, D. (ed.), Advances in Neural Information Processing Systems 2, pp. 324–331. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Jordan, M. I. & Rumelhart, D. E. (1992). Forward Models: Supervised Learning with a Distal Teacher. Cognitive Science 16: 307–354.

    Google Scholar 

  • Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press, Cambridge, MA. Kuperstein, M. (1988). Neural Model of Adaptive Hand-Eye Coordination for Single Postures. Science 239: 1308–3111.

    Google Scholar 

  • MacKay, D. J. C. (1992). Bayesian Model Comparison and Backprop Nets. In Moody, J. E., Hanson, S. J. & Lippman, R. P. (eds.), Advances in Neural Information Processing Systems 4, pp. 839–846. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Mahadevan, S. (1992). Enhancing Transfer in Reinforcement Learning by Building Stochastic Models of Robot Actions. In Machine Learning: Proceedings of the Ninth International Conference,pp. 290–299. Morgan Kaufmann.

    Google Scholar 

  • Maron, O. & Moore, A. (1994). Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation. In Advances in Neural Information Processing Systems 6, pp. 59–66. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • McCallum, R. A. (1995). Instance-based utile distinctions for reinforcement learning with hidden state. In Prieditis and Russell (1995), pp. 387–395.

    Google Scholar 

  • Mel, B. W. (1989). MURPHY: A Connectionist Approach to Vision-Based Robot Motion Planning. Technical Report CCSR-89–17A, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Miller, W. T. (1989). Real-Time Application of Neural Networks for Sensor-Based Control of Robots with Vision. IEEE Transactions on Systems, Man and Cybernetics 19 (4): 825–831.

    Article  Google Scholar 

  • Moore, A. W. (1990). Acquisition of Dynamic Control Knowledge for a Robotic Manipulator. In Proceedings of the 7th International Conference on Machine Learning,pp. 244–252. Morgan Kaufmann.

    Google Scholar 

  • Moore, A. W. (1991a). Knowledge of Knowledge and Intelligent Experimentation for Learning Control. In Proceedings of the 1991 Seattle International Joint Conference on Neural Networks.

    Google Scholar 

  • Moore, A. W. (1991b). Variable Resolution Dynamic Programming: Efficiently Learning Action Maps in Multivariate Real-valued State-spaces. In Birnbaum, L. & Collins, G. (eds.), Machine Learning: Proceedings of the Eighth International Workshop, pp. 333337. Morgan Kaufmann.

    Google Scholar 

  • Moore, A. W. (1992). Fast, Robust Adaptive Control by Learning only Forward Models. In Moody, J. E., Hanson, S. J. & Lippman, R. P. (eds.), Advances in Neural Information Processing Systems 4, pp. 571–578. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Moore, A. W. & Atkeson, C. G. (1993). Prioritized Sweeping: Reinforcement Learning with Less Data and Less Real Time. Machine Learning 13: 103–130.

    Google Scholar 

  • Moore, A. W., Hill, D. J. & Johnson, M. P. (1992). An Empirical Investigation of Brute Force to Choose Features, Smoothers and Function Approximators. In Hanson, S., Judd, S. & Petsche, T. (eds.), Computational Learning Theory and Natural Learning Systems, Volume 3. MIT Press.

    Google Scholar 

  • Moore, A. W. & Lee, M. S. (1994). Efficient Algorithms for Minimizing Cross Validation Error. In Proceedings of the I1 th International Conference on Machine Learning,pp. 190–198. Morgan Kaufmann.

    Google Scholar 

  • Moore, A. W. & Schneider, J. (1995). Memory-Based Stochastic Optimization. In Proceedings of Neural Information Processing Systems Conference.

    Google Scholar 

  • Omohundro, S. M. (1987). Efficient Algorithms with Neural Network Behaviour. Journal of Complex Systems 1 (2): 273–347.

    MathSciNet  MATH  Google Scholar 

  • Omohundro, S. M. (1991). Bumptrees for Efficient Function, Constraint, and Classification Learning. In Lippmann, R. P., Moody, J. E. & Touretzky, D. S. (eds.), Advances in Neural Information Processing Systems 3, pp. 693–699. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Ortega, J. M. & Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic Press.

    Google Scholar 

  • Peng, J. (1995). Efficient memory-based dynamic programming. In Prieditis and Russell (1995), pp. 438 416.

    Google Scholar 

  • Peng, J. & Williams, R. J. (1993). Efficient Learning and Planning Within the Dyna Framework. In Proceedings of the Second International Conference on Simulation of Adaptive Behavior. MIT Press.

    Google Scholar 

  • Pomerleau, D. (1994). Reliability estimation for neural network based autonomous driving. Robotics and Autonomous Systems, 12.

    Google Scholar 

  • Preparata, F. P. & Shamos, M. (1985). Computational Geometry. Springer-Verlag.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1988). Numerical Recipes in C. Cambridge University Press, New York, NY.

    Google Scholar 

  • Prieditis, A. & Russell, S. (eds.) (1995). Twelfth International Conference on Machine Learning, Tahoe City, CA. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Quinlan, J. R. (1993). Combining Instance-Based and Model-Based Learning. In Machine Learning: Proceedings of the Tenth International Conference,pp. 236–243. Morgan Kaufmann.

    Google Scholar 

  • Schaal, S. & Atkeson, C. (1994a). Robot Juggling: An Implementation of Memory-based Learning. Control Systems Magazine 14 (1): 57–71.

    Article  Google Scholar 

  • Schaal, S. & Atkeson, C. G. (1994b). Assessing the Quality of Local Linear Models. In Cowan, J. D., Tesauro, G. & Alspector, J. (eds.), Advances in Neural Information Processing Systems 6, pp. 160–167. Morgan Kaufmann.

    Google Scholar 

  • Stanfill, C. & Waltz, D. (1986). Towards Memory-Based Reasoning. Communications of the ACM 29 (12): 1213–1228.

    Google Scholar 

  • Stengel, R. F. (1986). Stochastic Optimal Control. John Wiley and Sons.

    Google Scholar 

  • Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine Learning 3: 9-44.

    Google Scholar 

  • Sutton, R. S. (1990). Integrated Architecture for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. In Proceedings of the 7th International Conference on Machine Learning,pp. 216–224. Morgan Kaufmann.

    Google Scholar 

  • Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD. Thesis, King’s College, University of Cambridge.

    Google Scholar 

  • Zografski, Z. (1992). Geometric and neuromorphic learning for nonlinear modeling, control and forecasting. In Proceedings of the 1992 IEEE International Symposium on Intelligent Control,pp. 158–163. Glasgow, Scotland. IEEE catalog number 92CH3110–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Atkeson, C.G., Moore, A.W., Schaal, S. (1997). Locally Weighted Learning for Control. In: Aha, D.W. (eds) Lazy Learning. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2053-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2053-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4860-8

  • Online ISBN: 978-94-017-2053-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics