Skip to main content

Genome plasticity in Lactococcus lactis

  • Chapter

Abstract

Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microoranisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abremski K, Hoess R & Sternberg N (1983) Studies on the properties of Pl site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301–1311.

    CAS  Google Scholar 

  • Anagnostopoulos C (1990) Genetic rearrangements in Bacillus subtilis. In: Drlica K & Riley M (Eds) The Bacterial Chromosome. (pp 361–371 ). American Society For Microbiology, Washington, DC.

    Google Scholar 

  • Bergthorsson U & Ochman H (1998) Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol. Biol. Evol. 15: 6–16.

    Article  PubMed  Google Scholar 

  • Bolotin A, Ehrlich D & Sorokin A (2002) Studies of genomes of dairy bacteria Lactococcus lactis. Science des Aliments. In press.

    Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD & Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    CAS  Google Scholar 

  • Campo N, Daveran-Mingot M-L, Leenhouts KJ, Ritzenthaler P & Le Bourgeois P (2002) A Cre/loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl. Environ. Microbiol. 68: 2359–2367.

    Google Scholar 

  • Canard B, Saint-Joanis B & Cole ST (1992) Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol. Microbiol. 6: 1421–1429.

    Google Scholar 

  • Carlson CR, Gronstad A & Kolsto AB (1992) Physical maps of the genomes of three Bacillus cereus strains. J. Bacteriol. 174: 37503756.

    Google Scholar 

  • Casjens S (1998) The diverse and dynamic structure of bacterial genomes. Annu. Rev. Genet. 32: 339–377.

    Article  PubMed  CAS  Google Scholar 

  • Chopin A, Bolotin A, Sorokin A, Ehrlich SD & Chopin MC (2001) Analysis of six prophages in Lactococcus lactis IL1403: differentgenetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29: 644–651.

    CAS  Google Scholar 

  • Cole ST, Supply P & Honore N (2001) Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr. Rev. 72: 449–461.

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881–10890.

    Article  PubMed  CAS  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW & Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427–5433.

    Google Scholar 

  • Daveran-Mingot M-L, Campo N, Ritzenthaler P & Le Bourgeois P (1998) A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J. Bacteriol. 180: 4834–4842.

    PubMed  CAS  Google Scholar 

  • Davidson BE, Kordias N, Dobos M & Hillier AJ (1996) Genomic organization of lactic acid bacteria. In: Venema G, Huis in’t Veld JHJ & Hugenholtz J (Eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications (pp 65–87 ). Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Davies FL, Underwood HM & Gasson MJ (1981) The value of plasmid profile for strain identification in lactic streptococci and the relationship between Streptococcus lactis 712, ML3 and C2. J. Appl. Bacteriol. 51: 325–337.

    Google Scholar 

  • DeBoy RT & Craig NL (1996) Tn7 transposition as a probe of cis acting interaction between widely separated (190 kilobases apart) DNA sites in the Escherichia coli chromosome. J. Bacteriol. 178: 6184–6191.

    PubMed  Google Scholar 

  • François V, Louarn J, Rebollo JE & Louam JM (1990) Replication termination, nondivisible zones, and structure of the Escherichia coli chromosome. In: Drlica K & Riley M (Eds) The Bacterial Chromosome (pp 351–359 ). American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Gasson MJ & Davies FL (1980) High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. J. Bacteriol. 143: 1260–1264.

    PubMed  Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Portillo FG, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitoumam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J & Cossart P (2001) Comparative genomics of Listeria species. Science 294: 849–852.

    PubMed  CAS  Google Scholar 

  • Janssen PJ, Audit B & Ouzounis CA (2001) Strain-specific genes of Helicobacter pylori: distribution, function and dynamics. Nucleic Acids Res. 29: 4395–4404.

    CAS  Google Scholar 

  • Le Bourgeois P, Daveran-Mingot ML & Ritzenthaler P (2000) Gen-orne plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorph-isms. J. Bacteriol. 182: 2481–2491.

    Article  PubMed  Google Scholar 

  • Le Bourgeois P, Lautier M, Mata M & Ritzenthaler P (1992) Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL1403. J. Bacteriol. 174: 6752–6762.

    PubMed  Google Scholar 

  • Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ & Ritzenthaler P (1995) Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis 1L1403 reveals a large genome inversion. J. Bacteriol. 177: 2840–2850.

    PubMed  Google Scholar 

  • Leblond P & Decaris B (1998) Chromosome geometry and intraspecific genetic polymorphism in Gram-positive bacteria revealed by pulsed-field gel electrophoresis. Electrophoresis 19: 582–588.

    Article  PubMed  Google Scholar 

  • Leblond P, Fischer G, Francou FX, Berger F, Guérineau M & De-caris B (1996) The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosome. Mol. Microbiol. 19: 261–271.

    Google Scholar 

  • Liu SL & Sanderson KE (1995) I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J. Bacteriol. 177: 3355–3357.

    Google Scholar 

  • Liu SL & Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc. Natl. Acad. Sci. U.S.A. 93: 10303–10308.

    Article  PubMed  Google Scholar 

  • Maguin E, Prévots H, Ehrlich SD & Gruss A (1996) Efficient insertional mutagenesis in Lactococci and other Gram-positive bacteria. J. Bacteriol. 178: 931–935.

    CAS  Google Scholar 

  • Mahillon J & Chandler M (1998) Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725–774.

    PubMed  Google Scholar 

  • McKay LL, Baldwin KA & Efstathiou JD (1976) Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32: 45–52.

    Google Scholar 

  • Nandi S, Khetawat G, Sengupta S, Majumder R, Kar S, Bhadra RK, Roychoudhury S & Das J (1997) Rearrangements in the genomes of Vibrio cholerae strains belonging to different serovars and biovars. Int. J. Syst. Bacteriol. 47: 858–862.

    Google Scholar 

  • Niki H, Yamaichi Y & Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14: 212–223.

    CAS  Google Scholar 

  • Nikolskaya T, Fonstein M & Haselkorn R (1995) Alignment of a 1.2 Mb chromosomal region from three strains of Rhodobacter capsulatus reveals a significantly mosaic structure. Proc. Nati. Acad. Sci. U.S.A. 92: 10609–10613.

    Google Scholar 

  • Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE & Blot M (1999) Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. U.S.A. 96: 3807–3812.

    Google Scholar 

  • Perkins JD, Don Heath J, Sharma BR & Weinstock GM (1993) XbaI and BlnI genomic cleavage maps of Escherichia coli K-12 strain MG1655 and comparative analysis of other strains. J. Mol. Biol. 232: 419–445.

    Google Scholar 

  • Rebollo JE, François V & Louarn JM (1988) Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc. Natl. Acad. Sci. U. S. A. 85: 9391–9395.

    Google Scholar 

  • Redenbach M, Flett F, Piendl W, Glocker I, Rauland U, Wafzig O, Kliem R, Leblond P & Cullum J (1993) The Streptomyces livid-ans 66 chromosome contains a 1 Mb deletogenic region flanked by two amplifiable regions. Mol. Gen. Genet. 241: 255–262.

    Google Scholar 

  • Rocha EP, Danchin A & Viari A (1999) Universal replication biases in bacteria. Mol. Microbiol. 32: 11–16.

    Google Scholar 

  • Roth JR, Benson N, Galitsky T, Haack K, Lawrence JG & Miesel L (1996) Rearrangements of the bacterial chromosome: formation and applications. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Resnikoff WS, Riley M, Schaechter M & Umbarger HE (Eds) Escherichia coli and Salmonella: Cellular and Molecular Biology. (pp 2256–2276 ). ASM Press, Washington, DC.

    Google Scholar 

  • Roussel Y, Bourgoin F, Guedon G, Pebay M & Decaris B (1997) Analysis of the genetic polymorphism between three Streptococcus thermophilus strains by comparing their physical and genetic organization. Microbiology 143: 1335–1343.

    CAS  Google Scholar 

  • Römling U, Greipel J & Tümmler B (1995) Gradient of genomic diversity in the Pseudomonas aeruginosa chromosome. Mol. Microbiol. 17: 323–332.

    Google Scholar 

  • Segall AM, Mahan MJ & Roth JR (1988) Rearrangement of the bacterial chromosome: forbidden inversions. Science 241: 13141318.

    Google Scholar 

  • Stibitz S & Yang MS (1997) Genomic fluidity of Bordetella pertussis assessed by a new method for chromosomal mapping. J. Bacteriol. 179: 5820–5826.

    PubMed  Google Scholar 

  • Syvanen M (1997) Insertion sequences and their evolutionary role. In: de Bruijn FJ, Lupski JR & Weinstock GM (Eds) Bacterial Genomes: Physical Structure and Analysis (pp 213–220 ). Chapman & Hall, NY.

    Google Scholar 

  • Tigges E & Minion FC (1994) Physical map of Mycoplasma galliseptum. J. Bacteriol. 176: 4157–4159.

    Google Scholar 

  • Toda T, Tanaka T & Itaya M (1996) A method to invert DNA segments of the Bacillus subtilis 168 genome by recombination between homologous sequences. Biosci. Biotech. Biochem. 60: 773–778.

    Google Scholar 

  • Tynkkynen S, Buist G, Kunji ERS, Kok J, Poolman B, Venema G

    Google Scholar 

  • & Haandrikman AJ (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523–7532.

    PubMed  Google Scholar 

  • Walsh PM & McKay LL (1981) Recombinant plasmid associated with cell aggregation and high-frequency conjugation in Streptococcus lactis ML3. J. Bacteriol. 146: 937–944.

    PubMed  Google Scholar 

  • Watanabe H, Mori H, Itoh T & Gojobori T (1997) Genome plasticity as a paradigm of eubacteria evolution. J. Mol. Evol. 44 (Suppl 1): S57 — S64.

    CAS  Google Scholar 

  • Yu W, Gillies K, Kondo JK, Broadbent JR & McKay LL (1996) Loss of plasmid-mediated oligopeptide transport system in Lactococci: another reason for slow milk coagulation. Plasmid 35: 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Zuerner RL, Herrmann JL & Saint Girons I (1993) Comparison of genetic maps for two Leptospira interrogans serovars provides evidence for two chromosomes and intraspecies heterogeneity. J. Bacteriol. 175: 5445–5451

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Campo, N., Dias, M.J., Daveran-Mingot, ML., Ritzenthaler, P., Le Bourgeois, P. (2002). Genome plasticity in Lactococcus lactis . In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics