Skip to main content

Global control of sugar metabolism: a Gram-positive solution

  • Chapter

Abstract

Bacteria utilise carbon sources in a strictly controlled hierarchical manner for which they have developed global control mechanisms that govern and coordinate carbon source-specific regulation. This is achieved via carbon catabolite repression (CCR), which is the result of global transcriptional control and inducer exclusion. A common mechanism for transcriptional control has evolved within the group of low-GC Gram-positive bacteria, including lactic acid bacteria. The seryl-phosphorylated form of the phosphotransferase HPr (HPr-ser-P) mediates CCR in concert with the pleiotropic regulator CcpA (catabolite control protein) by repressing or activating catabolitecontrolled genes. HPr-ser-P can concomitantly trigger inducer exclusion by inhibition of carbohydrate-specific permeases. Histidyl-phosphorylated HPr (HPr-his P) is required for the transport of many carbon sources by the phosphotransferase system (PTS). In addition, HPr-his P controls carbohydrate-specific regulators and catabolic enzymes by phosphorylation. Thus, the ratio of HPr-his P/HPr-ser-P determines utilisation of a particular carbon source. This ratio is mainly adjusted by the bifunctional HPr kinase/phosphatase (HPrK/P), which itself is controlled by the metabolic state of the cell. As a result, the information about the metabolic state of the cell is combined with signals scoring the availability of carbon sources to fine-tune the expression of catabolic genes with the goal to optimise growth rate in any given mixture of nutrients. This review summarises the current understanding of carbon catabolite regulation in low-GC Gram-positive bacteria with special emphasis on lactic acid bacteria.

Key words

  • carbon catabolite repression
  • carbon regulation
  • inducer exclusion
  • Lactobacillus
  • Lactococcus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-2029-8_4
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-2029-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD and Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis 1L1403. Genome Res. 11: 731–753.

    CrossRef  PubMed  CAS  Google Scholar 

  • Brochu D and Vadeboncoeur C (1999) The HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene. J. Bacteriol. 181: 709–717.

    PubMed  CAS  Google Scholar 

  • Bruckner R and Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141–148.

    CAS  Google Scholar 

  • Busby S and Ebright RH (1999) Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293: 199–213.

    CrossRef  PubMed  CAS  Google Scholar 

  • Charrier V, Buckley E, Parsonage D, Galinier A, Darbon E, Jaquinod M, Forest E, Deutscher J and Claiborne A (1997) Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvatedependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J. Biol. Chem. 272: 1416614174.

    Google Scholar 

  • Chaillou S, Postma PW and Pouwels PH (2001) Contribution of the phosphoenolpyruvate: mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. Microbiology 147: 671–679.

    PubMed  CAS  Google Scholar 

  • Chauvaux S, Paulsen IT and Saier MH Jr. (1998) CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J. Bacteriol. 180: 491–497.

    PubMed  CAS  Google Scholar 

  • Colland F, Barth M, Hengge-Aronis R and Kolb A (2000) Sigma factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and lrp transcription factors. EMBO J. 19: 3028–3037.

    Google Scholar 

  • Deutscher J, Reizer J, Fischer C, Galinier A, Saier MH, Jr. and Steinmetz M (1994) Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J. Bacteriol. 176: 3336–3344.

    PubMed  CAS  Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V and Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbiol. 15: 1049–1053.

    Google Scholar 

  • Djordjevic GM, Tchieu JH and Saier MH, Jr. (2001) Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224–3236.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Pérez-Martínez G and Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582–2590.

    CrossRef  PubMed  CAS  Google Scholar 

  • Faires N, Tobisch S, Bachem S, Martin-Verstraete I, Hecker M and Stulke J (1999) The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1: 141–148.

    Google Scholar 

  • Fieulaine S, Morera S, Poncet S, Monedero V, Gueguen-Chaignon V, Galinier A, Janin J, Deutscher J and Nessler S (2001) X-ray structure of HPr kinase: a bacterial protein kinase with a P-loop nucleotide-binding domain. EMBO J. 20: 3917–3927.

    Google Scholar 

  • Fisher SH, Strauch MA, Atkinson MR and Wray LV, Jr. (1994) Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. J. Bacteriol. 176: 1903–1912.

    PubMed  CAS  Google Scholar 

  • Galinier A, Haiech J, Kilhoffer MC, Jaquinod M, Stülke J, Deutscher J and Martin-Verstraete I (1997) The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc. Natl. Acad. Sci. U.S.A. 94: 8439–8444.

    Google Scholar 

  • Galinier A, Kravanja M, Engelmann R, Hengstenberg W, Kilhoffer MC, Deutscher J and Haiech J (1998) New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl. Acad. Sci. U.S.A. 95: 1823–1828.

    Google Scholar 

  • Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH, Jr. and Ordal GW (1998) Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. J. Bacteriol. 180: 4475–4480.

    PubMed  CAS  Google Scholar 

  • Görke B and Rak B (1999) Catabolite control of Escherichia coli regulatory protein BgIG activity by antagonistically acting phosphorylations. EMBO J. 18: 3370–3379.

    Google Scholar 

  • Gosalbes MJ, Monedero V and Pérez-Martínez G (1999) Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J. Bacteriol. 181: 39283934.

    Google Scholar 

  • Gosalbes MJ, Esteban CD and Pérez-Martínez G (2002) In vivo effect of mutations in the antiterminator LacT in Lactobacillus casei. Microbiology 148: 695–702.

    PubMed  CAS  Google Scholar 

  • Gösseringer R, Küster E, Galinier A, Deutscher J and Hillen W (1997) Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J. Mol. Biol. 266: 665–676.

    Google Scholar 

  • Guédon E, Renault P, Ehrlich SD and Delorme C (2001) Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J. Bacteriol. 183: 3614–3622.

    CrossRef  PubMed  Google Scholar 

  • Gunnewijk MG and Poolman B (2000) Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 275: 34073–34079.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gunnewijk Mg, van den Bogaard PT, Veenhoff LM, Heuberger EH, de Vos WM, Kleerebezem M, Kuipers OP abd Poolman

    Google Scholar 

  • B (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J. Mol. Microbiol. Biotechnol. 3: 401–413.

    Google Scholar 

  • Henkin TM (1996) The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 135: 9–15.

    CAS  Google Scholar 

  • Henkin TM, Grundy FJ, Nicholson WL a Chambliss GH (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GaIR repressors. Mol. Microbiol. 5: 575–584.

    Google Scholar 

  • Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H and Postma PW (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGIc Mol. Microbiol. 30: 487–498.

    CAS  Google Scholar 

  • Hoskins J, Alborn WE, Jr., Arnold J, Blaszczak LC, Burgett S and DeHoff BS et al. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183: 5709–5717.

    CrossRef  PubMed  CAS  Google Scholar 

  • Jones BE, Dossonnet V, Küster E, Hillen W, Deutscher J and Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J. Biol. Chem. 272: 26530–26535.

    Google Scholar 

  • Jourlin-Castelli C, Mani N, Nakano Mm and Sonenshein AL (2000) CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J. Mol. Biol. 295: 865–878.

    Google Scholar 

  • Kim JH, Voskuil MI and Chambliss GH (1998) NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc. Natl. Acad. Sci. U.S.A. 95: 9590–9595.

    Google Scholar 

  • Kravanja M, Engelmann R, Dossonnet V, Blüggel M, Meyer HE, Frank R, Galinier A, Deutscher J, Schnell N and Hengstenberg W (1999) The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol. Microbiol. 31: 59–66.

    Google Scholar 

  • Kunji ER, Mierau I, Hagting A, Poolman B and Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187–221.

    CrossRef  PubMed  CAS  Google Scholar 

  • Küster-Schöck E, Wagner A, Völker U and Hillen W (1999) Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium. J. Bacteriol. 181: 7634–7638.

    PubMed  Google Scholar 

  • Leboeuf C, Auffray Y and Hartke A (2000a) Cloning, sequencing and characterization of the ccpA gene from Enterococcus faecalis. Int. J. Food Microbiol. 55: 109–113.

    Google Scholar 

  • Leboeuf C, Leblanc L, Auffray Y and Hartke A (2000b) Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. J. Bacteriol. 182: 5799–5806.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW and Pouwels PH (1997) Regulation of expression of the Lactobacillus pentosus xylAB operon. J. Bacteriol. 179: 5391–5397.

    PubMed  CAS  Google Scholar 

  • Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M and

    Google Scholar 

  • Stülke J (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol. Microbiol. 41: 409–422.

    CrossRef  PubMed  Google Scholar 

  • Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP and de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789–798.

    Google Scholar 

  • Luesink EJ, Beumer CM, Kuipers OP and De Vos WM (1999) Molecular characterization of the Lactococcus lactis ptsH1 operon and analysis of the regulatory role of HPr. J. Bacteriol. 181: 764–771.

    PubMed  CAS  Google Scholar 

  • Lux R, Jahreis K, Bettenbrock K, Parkinson JS and Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92: 11583–11587.

    Google Scholar 

  • Mahr K, Hillen W and Titgemeyer F (2000) Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl. Environ. Microbiol. 66: 277–283.

    Google Scholar 

  • Mahr K, Esteban CD, Hillen W, Titgemeyer F and Pérez-Martínez G (2002) Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus megaterium. J. Mol. Microbiol. Biotechnol.: in press.

    Google Scholar 

  • Marasco R, Muscariello L, Varcamonti M, De Felice M and Sacco M (1998) Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J. Bacteriol. 180: 3400–3404.

    PubMed  CAS  Google Scholar 

  • Miwa Y, Nagura K, Eguchi S, Fukuda H, Deutscher J and Fujita Y (1997) Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Mol. Microbiol. 23: 1203–1213.

    Google Scholar 

  • Miwa Y, Nakata A, Ogiwara A, Yamamoto M and Fujita Y (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res. 28: 1206 1210.

    Google Scholar 

  • Monedero V, Gosalbes MJ and Pérez-Martínez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J. Bacteriol 179: 6657–6664.

    PubMed  CAS  Google Scholar 

  • Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonnet V, Martin-Verstraete I, Nessler S and Deutscher J (200la) Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J. 20: 3928–3937.

    Google Scholar 

  • Monedero V, Kuipers OP, Jamet E and Deutscher J (2001b) Regulatory functions of serine-46-phosphorylated HPr in Lactococcus lactis. J. Bacteriol. 183: 3391–3398.

    CrossRef  PubMed  CAS  Google Scholar 

  • Morel F, Frot-Coutaz J, Aubel D, Portalier R and Atlan D (1999) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiology 145: 437–446.

    CrossRef  PubMed  CAS  Google Scholar 

  • Morel F, Lamarque M, Bissardon I, Atlan D and Galinier A (2001) Autoregulation of the biosynthesis of the CcpA-like protein, PepR1, in Lactobacillus delbrueckii subsp bulgaricus. J. Mol. Microbiol. Biotechnol. 3: 63–66.

    Google Scholar 

  • Moreno MS, Schneider BL, Malle RR, Weyler W and Saier MH, Jr. (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by wholegenome analyses. Mol. Microbiol. 39: 1366–1381.

    Google Scholar 

  • Plumbridge J (2001) Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). J. Mol. Microbiol. Biotechnol. 3: 371–380.

    Google Scholar 

  • Posthuma CC, Bader R, Engelmann R, Postma PW, Hengsten-berg W and Pouwels PH (2002) Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Appl. Environ. Microbiol 68: 831–837.

    Google Scholar 

  • Postma PW, Lengeler JW and Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543–594.

    Google Scholar 

  • Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P and Martin-Verstraete I (1999) Catabolite regulation of the pta gene as part of carbon flow pathways inBacillus subtilis. J. Bacteriol. 181: 6889–6897.

    PubMed  CAS  Google Scholar 

  • Reizer J, Novotny MJ, Panos C and Saier MH Jr. (1983) Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J. Bacteriol 156: 354–361.

    Google Scholar 

  • Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH Jr. and Hillen W (1998) A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27: 1157–1169.

    Google Scholar 

  • Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH Jr. and Stülke J (1999) Novel phosphotransferase system genes revealed by genome analysis — the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145: 3419–3429.

    CrossRef  PubMed  CAS  Google Scholar 

  • Roseman S, Pettigrew DW and Remington SJ (1993) Structure of the regulatory complex of Escherichia coli I11G1c with glycerol kinase. Science 259: 673–677.

    Google Scholar 

  • Saier MH Jr. (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol. Rev. 53: 109–120.

    PubMed  CAS  Google Scholar 

  • Saier MH Jr., Chauvaux S, Cook GM, Deutscher J, Paulsen IT, Reizer J and Ye JJ (1996) Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142: 217–230.

    CrossRef  PubMed  CAS  Google Scholar 

  • Saier MH Jr. and Ramseier TM (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacterial 178: 3411–3417.

    CAS  Google Scholar 

  • Schick J, Weber B, Klein JR and Henrich B (1999) PepRI, a CcpAlike transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microbiology 145: 3147–3154.

    Google Scholar 

  • Seok YJ, Sun J, Kaback HR and Peterkofsky A (1997) Topology of allosteric regulation of lactose permease. Proc. Natl. Acad. Sci. U.S.A. 94: 13515–13519.

    Google Scholar 

  • Seok YJ, Koo BM, Sondej M and Peterkofsky A (2001) Regulation of E. coli glycogen phosphorylase activity by HPr. J. Mol. Microbiol. Biotechnol. 3(3): 385–393..

    Google Scholar 

  • Sondej M, Sun J, Seok YJ, Kaback HR and Peterkofsky A (1999) Deduction of consensus binding sequences on proteins that bind IIAGIc of the phosphoenolpyruvate:sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease. Proc. Natl. Acad. Sci. U.S.A. 96: 3525–3530.

    Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A and Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J. Bacteriol. 181: 7500–7508.

    PubMed  CAS  Google Scholar 

  • Stucky K, Schick J, Klein JR, Henrich B and Plapp R (1996) Characterization of pepR1, a gene coding for a potential transcriptional

    Google Scholar 

  • regulator of Lactobacillus delbrueckii subsp. lactis DSM7290. FEMS Microbiol. Lett. 136: 63–69.

    Google Scholar 

  • Stülke J, Arnaud M, Rapoport G and Martin-Verstraete I (1998) PRD-a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol. 28: 865–874.

    Google Scholar 

  • Stülke J and Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849–880.

    CrossRef  PubMed  Google Scholar 

  • Titgemeyer F, Mason RE and Saier MH, Jr. (1994) Regulation of the raffinose permease of Escherichia coli by the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system. J. Bacteriol 176: 543–546.

    PubMed  CAS  Google Scholar 

  • Tobisch S, Zühlke D, Bernhardt J, Stülke J and Hecker M (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J. Bacteriol. 181: 6996–7004.

    PubMed  CAS  Google Scholar 

  • Turinsky AJ, Grundy FJ, Kim JH, Chambliss GH and Henkin TM (1998) Transcriptional activation of theBacillus subtilis ackA gene requires sequences upstream of the promoter. J. Bacteriol. 180: 5961–5967.

    PubMed  CAS  Google Scholar 

  • Turinsky AJ, Moir-Blais TR, Grundy FJ and Henkin TM (2000) Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J. Bacteriol. 182: 5611–5614.

    Google Scholar 

  • Ueguchi C, Misonou N and Mizuno T (2001) Negative control of rpoS expression by phosphoenolpyruvate:carbohydrate phosphotransferase system in Escherichia coli. J. Bacteriol. 183: 520–527.

    CrossRef  PubMed  CAS  Google Scholar 

  • van den Bogaard PT, Kleerebezem M, Kuipers OP and de Vos WM (2000) Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvatedependent phosphotransferase system sugar. J. Bacteriol. 182: 5982–5989.

    CrossRef  PubMed  Google Scholar 

  • Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Pérez-Martínez G and Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570–584.

    Google Scholar 

  • Wray LV Jr, Pettengill FK and Fisher SH (1994) Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J. Bacteriol. 176: 1894–1902.

    PubMed  CAS  Google Scholar 

  • Ye JJ, Reizer J, Cui X and Saier MH Jr. (1994a) ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 91 (8): 3102–3106.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ye JJ, Reizer J, Cui X and Saier MH Jr. (1994b) Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J. Biol. Chem. 269 (16): 11837–11844.

    PubMed  CAS  Google Scholar 

  • Yebra MJ, Veyrat A, Santos MA and Pérez-Martinez G (2000) Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J. Bacteriol 182 (1): 155–163.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T and Fujita Y (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29 (3): 683–692.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Titgemeyer, F., Hillen, W. (2002). Global control of sugar metabolism: a Gram-positive solution. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive